Electronic Supplementary Information (ESI)

Metal-doped TiO₂ colloidal nanocrystals with broadly tunable plasmon resonance absorption

Sheng Cao^{*a*, *b*}, Shengliang Zhang^{*a*, *b*}, Tianran Zhang^{*a*, *b*}, Adrian Fisher^{*b*, *c*}, and Jim Yang Lee^{*, *a*, *b*}

^a Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent
 Ridge Crescent, Singapore 119260, Singapore
 ^b Cambridge Centre for Advanced Research and Education in Singapore, 1 Create Way, Singapore

138602, Singapore

^c Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, United Kingdom

Corresponding Email: cheleejy@nus.edu.sg

Fig. S1 Typical EDS spectra of (a) pristine TiO_2 , (b) Mo: TiO_2 , (c) W: TiO_2 , and (d) Nb: TiO_2 NCs. The insets show the corresponding chemical contents.

Fig. S2 XPS spectra of doped TiO₂ NCs: (a) Mo 3d, (b) W4f, (c) Nb 3d and (d) Ti 3p

Fig. S2a shows that the Mo 3*d* spectrum can be deconvoluted into two sets of doublets due to Mo $3d_{5/2}$ and Mo $3d_{3/2}$, with an intensity ratio of 3/2 and 3.2 eV apart. The doublet at 230.5 and 233.7 eV corresponds to the Mo⁵⁺ $3d_{5/2}$ and Mo⁵⁺ $3d_{3/2}$ states; and the doublet at 232.2 and 235.4 eV to the Mo⁶⁺ $3d_{5/2}$ and Mo⁶⁺ $3d_{3/2}$ states respectively. These measurements suggest the co-existence of two Mo oxidation states (27.4% Mo⁵⁺ and 72.6% Mo⁶⁺).¹ Similarly, the W 4*f* spectrum in Fig. S2b can be deconvoluted into the W $4f_{7/2}$ and W $4f_{5/2}$ doublets, with an intensity ratio of 4/3 and 2.1 eV apart. The doublet at 35.6 and 37.7 eV is assignable to W⁵⁺ $4f_{7/2}$ and W⁵⁺ $4f_{5/2}$ while the doublet peaks at 35.8 and 37.9 eV to W⁶⁺ $4f_{7/2}$ and W⁶⁺ $4f_{5/2}$. The two W oxidation states in co-existence are 37.8% W⁵⁺, and 62.2% W^{6+,2} Fig. S2c shows the Nb 3*d* spectrum with a doublet at 210.98 eV and 208.08 eV associated with Nb $3d_{3/2}$ and Nb $3d_{5/2}$, with a spin orbit splitting of 2.9 eV, confirming the presence of Nb^{5+,3} Thus, the oxidation states of the dopant ions in TiO₂ (Mo^{5+/6+}, W^{5+/6+}, and Nb⁵⁺) could all be identified by the XPS measurements.

Material	Nominal ratio (atom %)	Ratio from EDS (atom %)	Ratio from XPS (atom %)	
Mo-doped	Mo/Ti-10	6.4	7.0	
TiO ₂	WO/11-10	0.4	7.0	
W-doped TiO ₂	W/Ti=10	13.5	16.7	
Nb-doped TiO ₂	Nb/Ti=10	5.5	5.4	

Table S1. Chemical compositions of doped $\mathrm{TiO}_2\,\mathrm{NCs}$ as analyzed by EDS and XPS

Fig. S3 Schematic of the substitutional metal (M) doping of the TiO₂ crystal lattice via the formation of solid solution.

Fig. S4 Size distributions of pristine (a) TiO₂, (b) Mo:TiO₂, (c) W:TiO₂, and (d) Nb:TiO₂ NCs.

Fig. S5 Fourier-transform infrared spectrum (FTIR) of a Nb:TiO₂ NC film formed by drop-casting the Nb:TiO₂ NCs solution.

Fig. S6 Schematic diagram of the Burstein-Moss effect.⁴

The blue shift in the optical bandgap in heavily doped semiconductors is mainly caused by the Burstein-Moss effect, due to the high density of free electrons introduced by the dopant to populate the states close to the conduction band.⁵ As shown in Fig. S6, the apparent optical bandgap = actual bandgap + Moss-Burstein shift.⁴ If the conduction band edge of TiO₂ does not change with the dopant type, then the bandgap of the Mo-doped TiO₂ NCs with the highest electron density should be larger than the bandgaps of Nb-and W-doped TiO₂ NCs. However, the bandgap of M-doped TiO₂ can also be shifted by exchange interactions in the free-electron gas and electrostatic interactions between free electrons and the ionized impurities;⁶ and the extent of such interaction is dopant type dependent.⁷ This effect makes it difficult to directly compare between the optical spectra of Mo-, Nb- and W-doped TiO₂ NCs and to attribute the origin of the enlarged optical bandgap. The enlarged bandgaps in Fig. 3c are therefore used suggest the existence of Burstein-Moss effect in our doped NCs.

Fig. S7 The calculated band structure of pristine TiO_2 .

Nominal W/Ti ratio	Ratio W/Ti from EDS	Ratio W/Ti from XPS	Doping concentration from EDS
(<i>atom</i> %)	(<i>atom</i> %)	(<i>atom</i> %)	(<i>atom</i> %)
1	1.5	2.6	1.5
2.5	3.9	5.3	3.8
5	6.1	8.7	5.7
10	13.5	16.7	11.9
15	17.9	21.2	15.2
20	24.2	27.4	19.5

Table S2. Chemical compositions of W-doped TiO₂ NCs with different dopant levels as measured by EDS and XPS

Fig. S8 XRD patterns of W-doped TiO_2 NCs with different W-concentrations. The expanded view of the TiO_2 (101) diffractions in the right panel shows very limited peak shifts.

Fig. S9 Normalized LSPR peaks of W-doped TiO₂ NCs as a function of the dopant concentration.

Sample	Nominal W/Ti ratio (atom	W/Ti ratio from EDS	Doping concentration from EDS
	%)	(<i>atom</i> %)	(<i>atom</i> %)
0.5 mL OA	10	14.9	12.9
0.5 mL OA+0.1 mL OLA	10	13.9	12.2
0.5 mL OA+0.2 mL OLA	10	15.4	13.4
0.5 mL OA+0.4 mL OLA	10	15.1	13.3
0.5 mL OA+0.6 mL OLA	10	15.2	13.2
1 mL OA+0.6 mL OLA	10	16.4	14.1

Table S3. Chemical compositions of W-doped TiO₂ NCs prepared with different surfactant (OA and OLA) amounts.

Fig. S10 Schematic energy diagram of W-doped TiO_2 with decreasing NC size showing the increase in intraband transition energy with the decrease in the NC size.

Matarial	LSPR peak wavelength	Symthesis method	Daf
Material	(nm)	Synthesis method	a Kei.
Sa denad In O	1650 2600	Hartinization	8
Sn-doped In_2O_3	1630-2600	Heat injection	9
Sb-doped In ₂ O ₃	3100-5400	One-pot	10
Ti-doped In ₂ O ₃	4400-10333	4400-10333 One-pot	
Ge-doped In ₂ O ₃	-doped In ₂ O ₃ 3500-4000 One-		11
Al-doped ZnO	2800-6200	Heat injection	12
Ga-doped ZnO	4273-6920	Heat injection	13
In-doped ZnO	> 2500	One-pot	14
Ge-doped ZnO	> 2500	Heat injection	15
In-doped CdO	2000-3200	One-pot	16
Sn-doped CdO	1252-3189	Heat injection	17
F, In co-doped CdO	1500-3300	One-pot	18
Sn-doped Zn-Cd-O	890-2600	Heat injection	19
CsWO ₃	700-1100	Heat injection	20
	a broad peak		21
NawO ₃	around at 1112-1600	One-pot	21
Ga ₂ FeO ₄	1000-1300	One-pot	22
Nb-doped TiO ₂	> 2500	Heat injection	23
Nb-doped TiO ₂	3300	One-pot	This work
W-doped TiO ₂	980-1700	One-pot	This work
Mo-doped TiO ₂	650	One-pot	This work

Table S4. Summary of the LSPR performance of metal oxide plasmonic NCs reported in the literature

Fig. S11 TEM images of doped TiO₂ NCs from the gram-scale synthesis.

Fig. S12 XRD patterns of the doped TiO_2 NCs from the demonstrative scaled up synthesis. The reference reflections of anatase TiO_2 are shown on the 2 theta axis (JCPDS card 00-021-1272).

Fig. S13 UV-vis-IR absorption spectra of doped TiO₂ NCs from the gram-scale synthesis.

Fig. S14 TGA thermograms of doped TiO_2 NCs from the demonstrative scaled up synthesis. Theoretically, for 100% conversion of the precursors into doped NCs, 0.846, 0.934, and 0.843 g of Mo-, W-, and Nb-doped TiO_2 NCs should be formed. The actual yields of the demonstrative scaled up synthesis are therefore 86.4%, 86.6% and 91.1% for the Mo-, W-, and Nb-doped TiO_2 NCs respectively.

References

- 1. P. Qin, G. Fang, W. Ke, F. Cheng, Q. Zheng, J. Wan, H. Lei and X. Zhao, J. Mater. Chem. A, 2014, 2, 2742-2756.
- 2. M. Vasilopoulou, A. Soultati, D. Georgiadou, T. Stergiopoulos, L. Palilis, S. Kennou, N. Stathopoulos, D. Davazoglou and P. Argitis, *J. Mater. Chem. A*, 2014, **2**, 1738-1749.
- 3. Y. E. Saleh, M. A. Gepreel and N. K. Allam, Sci. Rep., 2017, 7, 40291.
- 4. S. N. Svitasheva and A. M. Gilinsky, Appl. Surf. Sci., 2013, 281, 109-112.
- 5. A. Agrawal, R. W. Johns and D. J. Milliron, Annu. Rev. Mater. Res., 2017, 47, 1-31.
- 6. Y. Liu, Y. Li and H. Zeng, J. Nanomater., 2013, 2013, 196521.
- 7. A. Kubacka, G. Colón and M. Fernández-García, Catal. Today, 2009, 143, 286-292.
- A. M. Schimpf, S. D. Lounis, E. L. Runnerstrom, D. J. Milliron and D. R. Gamelin, J. Am. Chem. Soc., 2015, 137, 518-524.
- 9. A. W. Jansons and J. E. Hutchison, ACS Nano, 2016, 10, 6942-6951.
- 10. H. Fang, M. Hegde, P. Yin and P. V. Radovanovic, Chem. Mater., 2017, 29, 4970-4979.
- E. L. Runnerstrom, A. Bergerud, A. Agrawal, R. W. Johns, C. J. Dahlman, A. Singh, S. M. Selbach and D. J. Milliron, *Nano Lett.*, 2016, 16, 3390-3398.
- 12. R. Buonsanti, A. Llordes, S. Aloni, B. A. Helms and D. J. Milliron, Nano Lett., 2011, 11, 4706-4710.
- 13. M. Saha, S. Ghosh, V. D. Ashok and S. K. De, Phys. Chem. Chem. Phys., 2015, 17, 16067-16079.
- 14. E. Della Gaspera, A. S. R. Chesman, J. van Embden and J. J. Jasieniak, ACS Nano, 2014, 8, 9154-9163.
- 15. E. Della Gaspera, N. W. Duffy, J. van Embden, L. Waddington, L. Bourgeois, J. J. Jasieniak and A. S. R. Chesman, *Chem. Commun.*, 2015, **51**, 12369-12372.
- T. R. Gordon, T. Paik, D. R. Klein, G. V. Naik, H. Caglayan, A. Boltasseva and C. B. Murray, *Nano Lett.*, 2013, 13, 2857-2863.
- 17. S. Ghosh, M. Saha, S. Paul and S. K. De, Small, 2017, 13, 1602469.
- 18. X. Ye, J. Fei, B. T. Diroll, T. Paik and C. B. Murray, J. Am. Chem. Soc., 2014, 136, 11680-11686.
- 19. S. Ghosh, M. Saha, V. Dev Ashok, B. Dalal and S. De, J. Phys. Chem. C, 2015, 119, 1180-1187.
- 20. J. Kim, A. Agrawal, F. Krieg, A. Bergerud and D. J. Milliron, Nano Lett., 2016, 16, 3879-3884.
- 21. J. Choi, K. Moon, I. Kang, S. Kim, P. J. Yoo, K. W. Oh and J. Park, Chem. Eng. J., 2015, 281, 236-242.
- 22. C. Urso, M. Barawi, R. Gaspari, G. Sirigu, I. Kriegel, M. Zavelani-Rossi, F. Scotognella, M. Manca, M. Prato, L. De Trizio and L. Manna, *J. Am. Chem. Soc.*, 2017, **139**, 1198-1206.
- 23. L. De Trizio, R. Buonsanti, A. M. Schimpf, A. Llordes, D. R. Gamelin, R. Simonutti and D. J. Milliron, *Chem. Mater.*, 2013, **25**, 3383-3390.