Electronic Supplementary Information

All–inorganic CsPbBr₃ perovskite quantum dots as photoluminescent probe for ultrasensitive Cu²⁺ detection

Yongfeng Liu,^a Xiaosheng Tang,^a Tao Zhu,^{*a} Ming Deng,^a Iroegbu Paul Ikechukwu,^b Wei Huang,^a Guolu Yin,^a Yongzhong Bai,^c Dingrong Qu,^c Xianbin Huang^c and Feng Qiu^c
^a Key Laboratory of Optoelectronic Technology & Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China

 ^b Information and Communications Engineering from the Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, China
 ^c State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao 266000,

*Corresponding author, E-mail: zhutao@cqu.edu.cn.

Supporting Figures and Tables

Table S1 Absorption peak, PL peak, Stokes shift, FWHM, and PL QY of CsPbBr₃ perovskites.

QDs	Abs peak (nm)/E1 (eV)	PL peak (nm)/E2 (eV)	Stokes shift (nm)	Stokes shift (meV)	FWHM (nm)	QY (%)
CsPbBr ₃	508.11/2.44	518.05/2.39	9.94	50	16	90.12

Figure S1 PL peak wavelength and intensity dependence of CsPbBr₃ on the excitation wavelength.

Figure S2 (a) Size distribution and (b) the typical cubic crystal structure diagram of CsPbBr₃.

Figure S3 XPS spectra of CsPbBr3 PQDs. (a) Survey XPS and high-resolution XPS of (b) Cs 3d,

(c) Pb 4f, and (d) Br 3d.

Figure S4 FTIR spectrum of CsPbBr₃ QDs.

Parameters QDs	τ ₁ (ns)	τ ₂ (ns)	τ ₃ (ns)	A ₁ (%)	A ₂ (%)	A ₃ (%)	τ _{ave} (ns)	χ²
CPB QDs in 0 nM Cu ²⁺	4.54	20.24	99.77	19.48	46.65	33.87	80.84	1.233
CPB QDs in 50 nM Cu ²⁺	3.95	17.36	88.28	19.52	46.63	33.85	71.83	1.161
CPB QDs in 100 nM Cu ²⁺	3.48	15.64	78.39	23.53	48.15	28.31	60.92	1.193

 Table S2 Fitting parameters of fluorescence decay curves.

 Table S3 Average lifetime of the CPB NCs in the presence of metal ions.

Metal ions	no	In ³⁺	Ag ⁺	Cd ²⁺	Fe ³⁺	Hg ²⁺	Mg ²⁺	Mn ²⁺	Na ⁺	Pb ²⁺	Zn ²⁺	Ni ²⁺	Cu ²⁺
τ _{av} (ns)	80.84	78.01	80.82	77.44	80.03	80.44	78.33	75.67	78.01	78.90	80.51	80.03	60.92