Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Supporting information to the article:

Influence of Lanthanides on Spin-Relaxation and Spin-Structure in a Family of Fe₇Ln₄ Single Molecule Magnets

Denis Prodius, Valeriu Mereacre,* Prashant Singh, Yanhua Lan, Samir Mameri, Duane D. Johnson, Wolfgang Wernsdorfer, Christopher E. Anson and Annie K. Powell

Fig. S2. The χ T vs T plots for 2, 3 and 4 with the data for 1 subtracted, i.e. without the magnetic contribution of the Fe₇ unit.

Figure S3: Field-dependence of magnetization of compounds 1-4.

Figure S4: (a and b) The frequency dependence of the in-phase (χ') and out-of-phase (χ'') signals under applied dc fields for 4; (c and d) The frequency dependence of the in-phase (χ') and out-of-phase (χ'') signals in $H_{dc} = 750$ Oe at different temperatures for 4; (e) plot of the magnetization relaxation rate *versus* the inverse of the absolute temperature for 4. The solid line represents a least-squares fit of the data to the Arrhenius equation; (f) The Cole-Cole plot of χ'' vs χ' at 2.2K for 4.

Figure S5: Mössbauer spectra for 1 (Fe₇Y₄) at 160 and 77 K in zero-field.

Figure S6: Mössbauer spectra for 3 (Fe₇Tb₄) at 110, 77 and 40 K in zero-field.

Compound,	Fe sites	$\delta^{[a]}$, mm/s	ΔE_Q or $\varepsilon^{[c]}$,	$\Gamma^{[d]}, mm/s$	θ ^[d] , °	$B_{\rm eff},{ m T}$
temperature,			mm/s			
(1) Fe ₇ Y ₄ 3K, 6.5T	Fe(1)	0.49(1)	-0.14(1)	0.34(1)	68.7	46.37
	Fe(2)	0.46(1)	-0.42(1)	0.34(1)	68.7	35.97
	Fe(3)	0.41(3)	-0.42(1)	0.34(1)	68.7	33.27
	Fe(4)	0.49(1)	0.10(1)	0.34(1)	68.7	45.84
	Fe(5)	0.49(1)	0.10(1)	0.34(1)	68.7	45.84
	Fe(6)	0.46(1)	-0.003(3)	0.34(1)	68.7	36.43
	Fe(7)	0.46(1)	-0.003(3)	0.34(1)	68.7	36.43
(3) Fe ₇ Tb ₄	Fe(1)	0.49(1)	-0.23(1)	0.34(1)	57.6	42.45
	Fe(2)	0.46(1)	0.21(1)	0.34(1)	57.6	42.70
	Fe(3)	0.44(1)	0.06(1)	0.34(1)	57.6	41.92
	Fe(4)	0.50(1)	0.11(1)	0.34(1)	57.6	40.77
3 K	Fe(5)	0.50(1)	0.11(1)	0.34(1)	57.6	40.77
	Fe(6)	0.50(2)	0.19(1)	0.34(1)	57.6	44.32
	Fe(7)	0.50(2)	0.19(1)	0.34(1)	57.6	44.32
(3) Fe ₇ Tb ₄ 3K, 6.5T	Fe(1)	0.49 ^[b]	0.12(1)	0.43(1)	62.7	46.05
	Fe(2)	0.46 ^[b]	0.19(1)	0.43(1)	62.7	39.84
	Fe(3)	0.44 ^[b]	0.29(1)	0.43(1)	62.7	35.65
	Fe(4)	0.50 ^[b]	-0.08(1)	0.43(1)	62.7	45.23
	Fe(5)	0.50 ^[b]	-0.08(1)	0.43(1)	62.7	45.23
	Fe(6)	0.50 ^[b]	0.17(1)	0.43(1)	62.7	37.40
	Fe(7)	0.50 ^[b]	0.17(1)	0.43(1)	62.7	37.40
(4) Fe ₇ Dy ₄ 3 K	Fe(1)	0.50(1)	0.20(1)	0.43(1)	51.9	39.06
	Fe(2)	0.48(2)	0.15(1)	0.43(1)	51.9	42.52
	Fe(3)	0.45(1)	0.45(1)	0.43(1)	51.9	41.31
	Fe(4)	0.50(1)	0.09(1)	0.43(1)	51.9	39.02
	Fe(5)	0.50(1)	0.09(1)	0.43(1)	51.9	39.02
	Fe(6)	0.48(2)	0.04(1)	0.43(1)	51.9	41.15
	Fe(7)	0.48(2)	0.04(1)	0.43(1)	51.9	41.15
(4) Fe ₇ Dy ₄ 3K, 6T	Fe(1)	0.50 ^[b]	0.09(1)	0.44(1)	64.1	44.53
	Fe(2)	0.48 ^[b]	0.10(1)	0.44(1)	64.1	37.77
	Fe(3)	0.45 ^[b]	0.11(1)	0.44(1)	64.1	35.53
	Fe(4)	0.50 ^[b]	0.02(1)	0.44(1)	64.1	44.65
	Fe(5)	0.50 ^[b]	0.02(1)	0.44(1)	64.1	44.65
	Fe(6)	0.48 ^[b]	-0.02(1)	0.44(1)	64.1	37.59
	Fe(7)	0.48 ^[b]	-0.02(1)	0.44(1)	64.1	37.59

Table S1. Mössbauer data* for 1, 3 and 4 at 3 K in zero-field and at 3 K in applied magnetic fields of 6 or 6.5 T.

^[a] Relative to α -Fe at room temperature. ^[b] Fixed values. ^[c] For magnetically-split spectra the quadrupole shifts, $\varepsilon = \frac{1}{2}\Delta E_Q(3\cos^2\varphi - 1)$. φ - Euler angle between the B_{int} and the main electrical field gradient (EFG) principal axis (V_{zz}).^[d] Constrained to the same value for all sites. δ is the isomer shift, ΔE_Q - quadrupolar splitting, θ - angle between B_{eff} and direction of γ -rays. B_{eff} - hyperfine field. The statistical errors are given in parentheses. The estimated absolute errors on B_{eff} are ± 0.05 mm/s. The relative areas for the doublets and sextets have been constrained to the 1:1:1:2:2 ratio.

*Given that spectra for all compounds at 40K and higher temperatures gave very similar hyperfine parameters to the published ones (V. Mereacre, et al., *Chem.-Eur. J.*, 2011, **17**, 123) (taking into consideration the compensation of isomeric shifts for second order Doppler shift), their parameters are not given.

Table S2: Calculated bond-lengths (Å) and bond-angles (°) of Fe7 core with oxygen in **2** (Fe7Gd4) polynuclear cluster show good agreement with experiments.

2	Avg. Bond-length (Å)		2	Bond-angle (°)		
Gd4Fe7	Expt.	Theory	Gd4Fe7	Expt.	Theory	
Fe-O	2.06	2.01	Fe1-O-Fe4	97.7 ⁰ ; 93.9 ⁰	95.14 ⁰ ; 94.52 ⁰ 97.88 ⁰ ; 96.56 ⁰	
			Fe1-O-Fe(2,3,6,7)/	94.5 ⁰ ; 94.9 ⁰		
			Fe4-O-Fe(2,3,6,7)/	119.9 ⁰ - 134.6º.	121.30 ⁰ - 137.80 ⁰	
			Fe5-O-Fe(2,3,6,7)/			

Geometry index (7) for 5-coordinated Fe(3) atom in {Fe₇Ln₄} complexes

To distinguish whether the geometry of the Fe(3) coordination center is trigonal bipyramidal or square pyramidal, the τ parameter was calculated according to Addison et al. [R1]:

$$au = rac{eta-lpha}{60^\circ} pprox -0.01667 lpha + 0.01667 eta \qquad (1)$$

where: $\beta > \alpha$ are the two greatest valence angles of the coordination center (Fig. S8). When τ is close to 0 the geometry is similar to square pyramidal, while if τ is close to 1 the geometry is similar to trigonal bipyramidal.

Figure S7: Coordination environment of pentacoordinated Fe(3) atom in complex 2.

 $\begin{aligned} \tau &= -0.01667*121.445 + 0.01667*164.013 = 0.7096 \text{ (for complex 1, Fe}_{7}Y_{4}) \\ \tau &= -0.01667*121.843 + 0.01667*164.233 = 0.7067 \text{ (for complex 2, Fe}_{7}Gd_{4}) \\ \tau &= -0.01667*121.816 + 0.01667*164.585 = 0.7129 \text{ (for complex 3, Fe}_{7}Tb_{4}) \\ \tau &= -0.01667*121.544 + 0.01667*164.221 = 0.7114 \text{ (for complex 4, Fe}_{7}Dy_{4}) \end{aligned}$

[R1] A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn and G. C. Verschoor, J. Chem. Soc., Dalton Trans., 1984, 1349.