Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Cage Carbon-substitute Does Matter for Aggregation-Induced Emission Features of *o*-Carborane-Functionalized Anthracene Triads

Xueyan Wu,^a Jixi Guo,^a * Yangjian Quan,^b Wei Jia,^a Dianzeng Jia,^{a*} Yi Chen,^a and Zuowei Xie^b

^aKey Laboratory of Energy Materials Chemistry, Ministry of Education; Key Laboratory of

Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, Xinjiang

University, Urumqi, 830046, Xinjiang P. R. China. Email: jxguo1012@163.com; jdz@xju.edu.cn;

Fax: +86-991-8588883; Tel: +86-991-8583083.

^bDepartment of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China.

Table of Contents

1. Molecular synthesis data	S2-S3
2. UV-vis absorption and fluorescence emission spectra of the triads	S4-S6
3. AIE attributes of the triads	S7-S9
4. Time-resolved Florescence Measurements	.S10- S11
5. Crystal Packing from X-ray Crystallography of the triads	S12-S13
6. Electrochemical studies of the anthrane	S13
7.NMR Spectra , HRMS and elemental analysis of all target compounds	S14-S20

1. Synthesis

Scheme S1. (a) *n*-BuLi, Ether, THF, 0 °C, CuCl, r.t. 1-bromo-2-triisopropylsilylacetylene, Reflux, 83%; (b) *n*-BuLi, THF, 0 °C, RI, 0 °C, 90%; (c) KF, *n*-Bu₄NBr CH₂Cl₂, H₂O; (d) 9-Bromoanthracene, Pd(PPh₃)₂Cl₂, PPh₃, CuI, NEt₃, Ar, 90 °C, 8 h; (e) n-BuLi, Tol, 0 °C, Anthrone, 100 °C, H₂O; (f) SnCl₂, Tol, 50 °C; (g) *n*-BuLi, Tol, 0 °C, 9,10-Anthracenedione, 100 °C, H₂O.

Synthesis of 1-triisopropylsilylethynyl-o-carborane (1).

This compound was synthesized using the modified procedures reported in literature.¹ To a mixed ether/THF solution (150 mL in 1/1) of *o*-carborane (5.77 g, 40 mmol) was slowly added *n*-BuLi (30 mL, 48 mmol, 1.6 M in hexane) at 0 °C, and the mixture was stirred at room temperature for 3 h. After addition of anhydrous CuCl (7.13 g, 72 mmol), the mixture was vigorously stirred for 2 h at room temperature and then heated to reflux for 30 min. To the above solution was slowly added 1-bromo-2-triisopropylsilylacetylene (12.54 g, 48 mmol) with vigorous stirring at room temperature. The reaction mixture was stirred at room temperature for 1 h and then heated to reflux for 2 h. The reaction was then quenched with aqueous HCl (20 mL, 3 N) with stirring. The organic layer was separated, washed with water and then dried over Na₂SO₄. Removal of solvents under reduced pressure yielded a crude oil. The crude product was purified by column chromatography on silica gel using hexane as eluent to give 1 as colorless oil (10.78 g, 83%). ¹H NMR (400 MHz, CD₂Cl₂): δ 3.97 (s, 1H) (cage H), 1.06 (br m, 21H). ¹³C{¹H} NMR (128 MHz, CD₂Cl₂): δ -5.01 (1B), -6.76 (1B), -11.81 (2B), -12.75 (4B), -15.72 (2B). HRMS: m/z calcd for C13H32B10Si [M]⁺: 324.3279. Found: 324.3278.

Synthesis of 1-triisopropylsilylethynyl-2-alkyl-o-carborane (2 and 3).

A representative procedure. To a diethyl ether solution (30 mL) of 1-triisopropylsilylethynyl-o-carborane (3.25 g, 10 mmol) was slowly added *n*-BuLi (7.5 ml, 12 mmol, 1.6 M in hexane) at 0 °C, and the resulting mixture was stirred at room temperature for 2 h. The above solution was cooled to 0 °C, to which was slowly added alkyl iodide (15 mmol) with vigorous stirring, and the reaction mixture was stirred at room temperature for 12 h. After hydrolysis with water and

extraction with diethyl ether (3×30 mL), the ether solutions were combined and concentrated to dryness in vacuo. The residue was purified by column chromatography on silica gel using n-hexane as eluent to give the products **2** and **3**.

1-Triisopropylsilylethynyl-2-methyl-o-carborane (2): Yield 94%. Colorless oil. ¹H NMR (400 MHz, CD₂Cl₂): δ 2.17 (s, 3H), 1.08 (br m, 21H). ¹³C{¹H} NMR (100 MHz, CD₂Cl₂): δ 98.93, 87.30 (C=C), 77.12, 67.04 (cage C), 24.27, 18.67, 11.44. ¹¹B NMR (128 MHz,CD₂Cl₂): δ -3.37 (1B), -6.73 (1B), -8.30 (2B), -10.11 (6B). HRMS: m/z calcd for C₁₄H₃₄B₁₀Si[M]⁺: 338.3436. Found: 338.3433.

1-Triisopropylsilylethynyl-2-ethyl-o-carborane (**3**): Yield 98%. Colorless oil. ¹H NMR (400 MHz, CD₂Cl₂): δ 2.47 (q, J = 7.6 Hz, 2H), 1.18 (t, J = 7.6 Hz, 3H), 1.06 (br m, 21H). ¹3C{¹H} NMR (100 MHz, CD₂Cl₂): δ 98.66, 87.33 (C=C), 82.92, 67.83 (cage C), 30.06,18.61, 14.14, 11.39. ¹¹B{¹H} NMR (128 MHz, CD₂Cl₂): δ -3.74 (1B), -5.99 (1B), -9.27 (2B), -10.38 (4B), -11.88 (2B). HRMS: m/z calcd for C₁₅H₃₆B₁₀Si [M]⁺: 352.3593. Found: 352.3595.

Synthesis of 1-ethynyl-2-alkyl-o-carboranes (4-6). A representative procedure.

All compounds were synthesized using the modified procedures reported in literature 3 1-Triisopropylsilylethynyl-2-alkyl-*o*-carborane (5.0 mmol), KF (2.91 g, 50 mmol), Bu₄NBr (0.16 g, 0.5 mmol), water (10 mL) and CH₂Cl₂ (25 mL) were mixed and stirred vigorously at room temperature overnight until all of the starting materials had disappeared. The lower layer was separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 30 mL). The combined CH₂Cl₂ solutions were dried over Na₂SO₄. After removal of the solvent in vacuum, the residue was purified by column chromatography on silica gel using n-hexane as eluent to give the desired products **4-6**.

1-Ethynyl-o-carborane (4): Yield 90%. White solid. Mp: 84.1-86.3°C. ¹H NMR (400 MHz, CD₂Cl₂): δ 3.99 (s, 1H), 2.34 (s, 1H). ¹³C{¹H} NMR (100 MHz, CD₂Cl₂): δ 77.49, 68.16(C=C), 63.38, 60.20 (cage C). ¹¹B{¹H} NMR (128 MHz, CD₂Cl₂): δ -2.64 (1B), -4.04 (1B), -9.49 (2B), -10.98 (4B), -13.41 (2B). HRMS: m/z calcd for C₅H₁₄B₁₀ [M]⁺: 168.1939. Found: 168.1938.

1-Ethynyl-2-methyl-*o*-carborane (**5**): Yield 91%. White solid. M.p: 118.7-119.8°C. ¹H NMR (400 MHz, CD₂Cl₂): δ 2.57 (s, 1H), 2.19 (s, 3H). ¹³C{¹H}NMR (100 MHz, CD₂Cl₂): δ 77.21, 71.92 (C=C), 76.37, 65.55 (cage C), 24.28. ¹¹B{¹H} NMR (128 MHz, CD₂Cl₂): δ -2.57 (1B), -6.23 (1B), -8.10 (2B), -9.67 (6B). HRMS: m/z calcd for C₅H₁₄B₁₀ [M]⁺: 182.2093. Found: 182.2091.

1-Ethynyl-2-ethyl-*o*-carborane (**6**): Yield 95%. Colorless oil. ¹H NMR (400 MHz, CD₂Cl₂): δ 2.56 (s, 1H), 2.47 (q, J = 7.6 Hz, 2H), 1.20 (t, J = 7.6 Hz, 3H). ¹³C{¹H}NMR (100 MHz, CD₂Cl₂): δ 82.98, 71.91 (C ≡C), 76.14, 65.38 (cage C), 30.10, 14.24. ¹¹B{¹H}NMR (128 MHz, CD₂Cl₂): δ -3.52 (1B), -6.10 (1B), -9.56 (2B), -10.40 (4B), -12.09 (2B). HRMS: m/z calcd for C₆H₁₆B₁₀ [M]⁺: 196.2253. Found: 196.2252

Synthesis of pentacenediols (7-9). A representative procedure.

To a toluene solution (30 mL) of 1-ethynyl-2-alkyl-o-carborane **4-6** (3.0 mmol) was added nBuLi (1.88 mL, 3.0 mmol, 1.6 M in hexane) dropwise at 0 °C, and the resulting mixture was stirred for 12 h at room temperature. Compound 9,10-Dioxoanthracene (0.21 g, 1.0 mmol) was added to the above solution and the reaction mixture was heated at 100 °C for 12 h. The reaction was then quenched with water (5 mL) and extracted with CH_2Cl_2 (3 × 30 mL). The organic solutions were combined, washed with brine, and dried over anhydrous Na_2SO_4 . After removal of the solvent, the residue was purified by column chromatography on silica gel using n-hexane/ CH_2Cl_2 (1/1 in v/v) as eluent to give the desired products **7-9** and the product were used without further purification.

Scheme S2. The possible pathways of destroy the chemical structure of the mono-*o*-carboranyl complexes.

2. UV–Vis absorption and fluorescence emission spectra

Fig.S1 UV-Vis absorption of **HCA**, **ECA** and **MCA** in (a) Toluene, (b) THF, (c) DCM, (d) Chloroform, (e) DMF, (f) n-hexane. $c = 1.0 \times 10^{-5}$ M, 20 °C.

Fig.S2 UV-Vis absorption of (a) **BPEA**,(b) **HCA**, (c) **MCA** and (d) **ECA** in different solvents. $c = 1.0 \times 10^{-5}$ M, 20 °C.

Fig.S3 Fluorescence spectra of (a) **BPEA**, (b) **HCA**, (c) **MCA** and (d) **ECA** in different solvents. ($\lambda_{ex} = 420$ nm). $c = 1.0 \times 10^{-5}$ M, 20 °C.

solvents. The compounds were excited at the $\lambda_{max,abs}$. $c = 1.0 \times 10^{-5}$ M, 20 °C.

3. AIE attributes of the triads

Fig.S5 UV-vis spectra of (a) **HCA**, (b) **MCA** and (c) **ECA** in THF/water mixtures with different water fractions (*f*_w).

Fig.S6 (a) Fluorescence spectra of **HCA** in THF/water mixtures with different water volume fractions, (b) PL intensity enhancement ratio I/I_0 versus water fraction curves, where I_0 is the PL intensity in pure THF solution. Inset: photographs taken under UV illumination for **HCA** in the different water fractions. ($\lambda_{ex} = 420 \text{ nm}$), $c = 1.0 \times 10^{-5} \text{ M}$, 20 °C.

Fig.S7 (a) Fluorescence spectra of **ECA** in THF/water mixtures with different water volume fractions, (b) PL intensity enhancement ratio I/I₀ versus water fraction curves, where I₀ is the PL intensity in pure THF solution. Inset: photographs taken under UV illumination for **ECA** in the different water fractions. ($\lambda_{ex} = 420 \text{ nm}$), $c = 1.0 \times 10^{-5} \text{ M}$, 20 °C.

Fig.S8 Decay profiles of fluorescence lifetime measurement of (a) **HCA** (E_m = 555 nm), (b) **MCA** (E_m = 550 nm) in THF with various water volume fractions (c = 1.0 × 10⁻⁵ M). 20 °C.

Table S1. Photoluminescence lifetime of HCA, MCA and ECA in different water fractions.

f.,		$ au_{f}^{a}(ns)$	
Jw	НСА	MCA	ECA
0%	0.63(40.7%), 7.61(50.3%)	0.48(75.1%), 8.41(24.9%)	0.43(78.7%), 6.05(21.3%)
10%	2.91(51.0%), 6.62(41.0%)	0.70(44.6%), 6.53(55.4%)	0.62(45.0%), 5.27(55.0%)
30%	2.89(50.9%), 6.48(49.1%)	2.68(35.3%), 6.01(64.7%)	0.52(10.8%), 4.74(89.2%)
50%	2.92(53.4%), 7.16(46.6%)	2.79(21.8%), 6.83(78.2%)	0.50 (8.3%), 4.61(91.7%)
70%	2.80(63.4%), 6.68(36.6%)	4.72(63.3%), 8.05(36.7%)	3.86(60.1%), 7.75(39.9%)

^a Fluorescence lifetime.

Fig.S9 Normalized fluorescence spectra of BPEA, HCA, MCA and ECA in the solid state. (λ_{ex} = 420 nm), 20 °C.

Fig.S10 PL spectra of (a) HCA, (b) MCA and (c) ECA in the solid state during heating from 77 to 393 K.

4.Time-resolved Florescence Measurements

Fig.S11 Decay profiles of fluorescence lifetime measurement of (a) **BPEA**, (b) **HCA** and (c) **ECA** in various state. 20 °C.

Compound		$\tau^a(ns)$	
Compound	Sol^b	Agg^c	Solid d
BPEA	3.92(100%)	_e	4.73(100%)
HCA	0.63(40.7%), 7.61(50.3%)	2.80(63.4%), 5.68(36.6%)	4.19(77.1%), 7.81(22.9%)
МСА	0.48(65.1%), 8.41(34.9%)	4.64(61.6%), 8.55(38.4%)	4.38(87.9%), 18.4(12.1%)
ECA	0.43(78.7%), 6.05(21.3%)	4.72(63.3%), 8.05(36.7%)	4.39(81.0%), 14.5(19.0%)
^a Fluorescence	lifetime. ^b In pure THF. ${}^{c}f_{W}$ =	70%. ^d In the solid state. ^e Not	applicable or not observed.

Table S2. Photoluminescence lifetime of BPEA, HCA, MCA and ECA in different conditions.

Compound	State	$k_r d(10^7 s^{-1})$	k_{nr}^{d} (10 ⁷ s ⁻¹)
	Sol^a	21.70	3.81
BPEA	Agg^b	_e	e
	Solid ^c	5.34	15.80
	Sol^a	0.77	23.72
HCA	Agg^b	1.04	20.58
	Solid ^c	1.40	18.59
	Sol^a	0.28	30.49
MCA	Agg^b	1.40	1.49
	Solid ^c	7.06	9.41
	Sol^a	0.50	60.82
ECA	Agg^b	1.61	15.23
	Solid ^c	5.01	10.10

Table S3. Emission properties of compounds in different states

^{*a*} In pure THF. ^{*b*} f_{W} =70%. ^{*c*} In the solid state. ^{*d*} Fluorescence emission rate constant (k_r) and non-radiative decay rate constant (k_{nr}) were calculated as follows: k_r= Φ_f/η , k_{nr}=(1- Φ_f)/ η . ^{*e*} Not detected.

5. Crystal Packing from X-ray Crystallography

Fig.S12 ORTEP plots showing the crystal structures of (a) **MCA** and (b) **ECA** with ellipsoids at 30% probability and atom numbering scheme.

Compounds	MCA	ECA
CCDC	1545548	1545547
Empirical formula	$C_{24}H_{34}B_{20}$	$C_{26}H_{38}B_{20}$
Formula weight	538.71	566.76
Temperature, K	173(2)	298(2)
Wavelength	0.71073 Å	0.71073 Å
Crystal system	Monoclinic	Triclinic
Space group	P2(1)/c	P-1
Unit cell dimensions	a = 13.1826(13)Å.	a = 6.8517(4) Å
	b =20.410(2) Å.	b = 7.8881(6) Å
	c = 13.5543(14) Å.	c = 16.0370(11) Å
	$\alpha = 90^{\circ}$	$\alpha = 83.056(2)^{\circ}$
	$\beta = 118.359(2)^{\circ}$	$\beta = 86.331(2)^{\circ}$
	γ = 90 °	γ = 76.6190(10) °
Volume, Å ³	3209.1(6)	836.45(10)
Z	4	2
Calculated density, g/cm ³	1.115	1.125
Absorption coefficient, mm ⁻¹	0.054	0.054
F(000)	1112	294
Crystal size, mm ³	$0.50 \times 0.40 \times 0.30$	$0.40 \times 0.30 \times 0.20$
Theta range, degree	$1.98 - 25.25^{\circ}$	$2.56 - 25.25^{\circ}$
Limiting indices	$-15 \le h \le 15$	$-8 \le h \le 8$
	$-24 \le k \le 24$	$-9 \le k \le 9$
	$-15 \le l \le 12$	$-19 \le l \le 19$
Reflections collected / unique	32464 / 5645 [R(int) = 0.0364]	22732 / 3015 [R(int) = 0.0377]
Data / restraints / parameters	5645 / 0 / 402	3015 / 2 / 273
Goodness-of-fit on F^2	1.090	1.054
Final R indices $[I > 2 \sigma (I)]$	$R_1 = 0.0687, wR_2 = 0.1999$	$R_1 = 0.0732, wR_2 = 0.1946$
R indices (all data)	$R_1 = 0.0875, WR_2 = 0.2242$	$R_1 = 0.0942, WR_2 = 0.2124$
Largest diff. peak and hole	0.814 and -0.256 e∙Å ⁻³	0.232 and -0.250 e·Å⁻₃

Table S4. Crystal data and structure refinement for MCA and ECA.

Fig.S13 Molecular packings of **MCA** (a) in the c-axis and **ECA** (b) in the c-axis in a single unit cell by the Mercury program. Carbon (gray) and boron (orange), hydrogen atoms are omitted for clarity.

Fig.S14 Selected bond length and torsion angles for (a) **MCA** and (b)**ECA** by the Mercury program. Carbon (gray) and boron (orange), hydrogen atoms are omitted for clarity.

		sonia iongin	[11] unu tororon ung		Tunu Born		
	Bond	lengths [Å]	Bond ang	gles[°]	Torsion angles[°]		
	C(1) $C(2)$	1 690(0)	$C(a_1)$ $C(a_2)$ $C(a_3)$	11= 1(0)	C(11)-C(12)-C(32)-C(33)	-47.02	
Ĺ	C(1)-C(2)	1.689(3)	0(21)-0(1)-0(2)	11/.1(2)	C(1)-C(2)-C(25)-C(38)	76.25	
МСА	$C(\alpha)$ $C(\alpha\alpha)$	1 400(0)	C(aa) C(a) C(1)	117 0(10)	C(11)-C(12)-C(32)-C(31)	-126.03	
	0(2)-0(23)	1.432(3)	0(23)-0(2)-0(1)	11/.2(19)	C(1)-C(2)-C(25)-C(26)	-101.90	
	C(23)-C(24)	1.196(3)	C(24)-C(23)-C(2)	178.2(3)	C(29)-C(26)-C(33)-C(36)	-172.16	
	C(1)-C(2)	1.687(3)	C(11)-C(1)-C(2)	118.0(2)	C(2)-C(1)-C(15)-C(16)	34.04	
ECA	C(1)-C(11)	1.430(3)	C(20)-C(2)-C(1)	115.87(19)	C(2)-C(1)-C(15)-C(14)	-145.88	
	C(11)-C(12)	1.185(3)	C(12)-C(11)-C(1)	176.0(3)	C(18)-C(16)-C(16A)-C(18A)	180.00	

Table S5. Selected bond length [Å] and torsion angles [°] for MCA and ECA.

6. Electrochemical studies of the compounds

Fig. S15 Cyclic voltammogram of (a) **BPEA**, (b) **HCA**, (c) **MCA**, (d) **ECA**. For (a)–(d), $c = 1.0 \times 10^{-3}$ M. In deaerated CH₂Cl₂ solutions containing the compounds, 0.10 M Bu₄NPF₆ as supporting electrode, Ag/AgNO₃ as reference electrode, Scan rates: 100 mV/s. For all compounds Ferrocene (Fc) ($c = 1.0 \times 10^{-3}$ M) was used as internal reference. 20 °C.

Fig. S16 Cyclic voltammogram of Anthracene, $c = 1.0 \times 10^{-3}$ M. In deaerated CH₂Cl₂ solutions containing the compounds, 0.10 M Bu₄NPF₆ as supporting electrode, Ag/AgNO₃ as reference electrode, Scan rates: 100 mV/s. Ferrocene (Fc) ($c = 1.0 \times 10^{-3}$ M) was used as internal reference. 20 °C.

Fig. S17 Normalized PL spectra of (a) **HCA**, (b) **MCA**, (c) **ECA** in 2-MeTHF at r.t. (black line) and 77 K (red line).

7. NMR Spectra of all target compounds

Fig. S18 ¹H NMR of HCA (400 MHz, CD₂Cl₂).

Fig. S19 $\ ^{13}C\{^{1}H\}$ NMR of HCA (100 MHz, CD₂Cl₂).

Fig. S20 ${}^{11}B{}^{1}H$ NMR of HCA (128 MHz, CD₂Cl₂).

Fig. S21 HRMS of HCA.

Fig. S22 ¹H NMR of MCA (400 MHz, CD_2Cl_2).

Fig. S23 ${}^{13}C{}^{1}H$ NMR of MCA (100 MHz, CD₂Cl₂).

Accurate Mass Measurement

g:

Fig. S25 HRMS of MCA.

Fig. S27 $^{13}C\{^{1}H\}$ NMR of ECA (100 MHz, CD₂Cl₂).

Fig. S28 ${}^{11}B{}^{1H}$ NMR of ECA (128 MHz, CD₂Cl₂).

Molecular formula $C_{26}B_{20}H_{38}$ $[M]^+$ (theoretical) = 566.4989

Fig. S29 HRMS of ECA.

Analytic functional te	esting					
serial number 19152	122					
Serial Humberry 1020						
Statistic report						
No. Name	C [%]	H [%]	N [%]	S [%]		
59 wuxueyanECA	54.90	6.306	2.03	0.096		
60 wuxueyanECA	55.24	6.418	2.08	0.002		
Mean caule	55.07	6.362	2.06	0.049		
Deviation, abs.	0.24	0.080	0.04	0.067		
Deviation, rel. [%]	0.44	1.244	1.87	135.725		
Detal [%]	0.34	0.112	0.05	0.094		
61 wuxueyanMCA	53.49	6.605	2.13	0.028		
62 wuxueyanMCA	54.78	6.543	2.08	0.013		
Mean caule	54.14	6.574	2.10	0.021		
Deviation, abs.	0.91	0.044	0.04	0.011		
Deviation, rel. [%]	1.69	0.667	1.69	51.287		
Detal [%]	1.29	0.062	0.05	0.015		
Stan Standard			1. 2. 2. 2.			
63 wuxueyanHCA	51.70	5.874	2.08	0.015		
64 wuxueyanHCA	51.98	5.852	2.08	0.021		
Mean caule	51.84	5.863	2.08	0.018		
Deviation, abs.	0.20	0.016	0.00	0.005		
Detal [%]	0.3	0.265	0.05	25.105		
Detai [76]	0.20	0.022	0.00	0.006		
N						
Name:eassuperuser	Acces	s' varioEL au	he superior	-	201201111	

Fig. S30 The elemental analysis of compounds of HCA, MCA and ECA.

Reference:

[1] (a) J. A. DuPont and M. F. Hawthorne, J. Am. Chem. Soc., 1964, 86, 1642–1643; (b) J. Guo, D. Liu, J.

Zhang, J. Zhang, Q. Miao and Z. Xie. Chem. Commun., 2015, 51, 12004–12007.