Supplementary Materials for "Robust half-metallicities and perfect

spin transport properties in 2D transition metal dichlorides"

Yulin Feng,^a Xuming Wu,^a Jiangchao Han^a and Guoying Gao*ab

^aSchool of Physics Huazhong University of Science and Technology, Wuhan 430074, China

^bWuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China

Fig. S1 The spin density isosurface plots (keeping the same value of $0.0026 \text{ e/}\text{Å}^3$ for both plots) for (a) 1H-VCl₂ monolayer and (b) 1T-VCl₂ monolayer. The cyan and yellow isosurfaces represent the spin-up and spin-down components, respectively.

Fig. S2 The calculated spin-dependent band structures of 1H- and 1T-MCl₂ monolayers at equilibrium lattice constants. The dashed line indicates the Fermi level at zero eV.

Fig. S3 The calculated spin-dependent band structures of half-metallic 1H-VCl_2 , $CrCl_2$, $CoCl_2$ and $NiCl_2$ monolayers as well as 1T-CrCl_2 , $FeCl_2$ and $CoCl_2$ monolayers at biaxial strains. The dashed line indicates the Fermi level at zero eV.