Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

[Electronic Supplementary Information]

Enhanced performance and mechanical durability of flexible solar cell from dry transfer of PEDOT:PSS with polymer nanoparticles

Jong Hwa Lee,^a Young Yun Kim,^{a,b} O Ok Park^{*a}

a. Department of Chemical and Biomolecular Engineering (BK21+ graduate Program),
Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon
305-701, Republic of Korea.

Division of Advanced Materials, Korea Research Institute of Chemical Technology,
 Republic of Korea

* E-mail: oopark@kaist.ac.kr (OOP)

Figure S1. Two-dimensional AFM roughness analysis with RMS values: A) spin-coated PEDOT:PSS, B) transferred PEDOT:PSS and C) transferred PEDOT:PSS with PS NPs

Figure S2. The J-V curve of the PTB7:PC₇₁BM-based reference device fabricated on ITO substrate with inserted photovoltaic parameters

Figure S3. The J-V curve of the PTB7:PC₇₁BM-based device fabricated by transfer of PEDOT:PSS with different volume ratio of PS NPs

Table S1. Fitting parameter for the time-resolved photoluminescent (TRPL) decay curves of

 spin coated PEDOT:PSS, transferred PEDOT:PSS and transferred PEDOT:PSS with PS NPs

Sample	A ₁ (%)	${ au}_1$ (ns)	A ₂ (%)	${oldsymbol au}_2$ (ns)	$ au_{avg}$ (ns)
Spin-coated PEDOT:PSS	80.101	0.59853	19.899	0.20691	0.5206
Transferred PEDOT:PSS	79.263	0.54164	20.737	0.164	0.4633
Transferred PEDOT:PSS with PS NPs (ϕ 0.2)	84.68	0.48976	15.32	0.12666	0.4341

Figure S4. S2p XPS spectra of the PEDOT:PSS prepared by using different coating process.

Figure S5. (a) UPS spectra of the PEDOT:PSS prepared by spin coating and stamping transfer process. (b) Schematic energy band diagram with two different work functions of spin-coated and transferred PEDOT:PSS.

Figure S6. Normalized values of (a) J_{sc} , (b) FF, and (c) V_{oc} as functions of storage time. (d) and (e) show the normalized efficiencies of the flexible device without or with PS NPs as a function of bending cycles for each sample.

Table S2. Contact angles with liquid droplets of water and ethylene glycol. The calculated

 surface energy values of spin-coated PEDOT:PSS and transferred PEDOT:PSS with PS NPs.

Surface energy values were calculated by using the following equation with measured contact angle values.

$$\gamma_{LV}(1+\cos\theta) = 2\sqrt{\gamma_{SV}^d \gamma_{LV}^d} + 2\sqrt{\gamma_{SV}^p \gamma_{LV}^p}$$

Here, γ^d and γ^p mean dispersion and polar forces, and values of γ_{LV} were listed below

$$\gamma_W^d = 21.8 m J m^{-2} and \gamma_W^p = 51 m J m^{-2}$$

 γ^{d}_{EG} = 29.3mJ m⁻² and γ^{p}_{EG} = 47.3mJ m⁻²