Supporting information for

The photochromism, Light Harvesting and self-assembly activity of a

multi-function Schiff-base compound based on AIE effect

Jie Chai, Yanbo Wu, Binsheng Yang and Bin Liu

Scheme S1. Synthetic routes of compounds 1–4.

Fig. S1. ¹H NMR spectra of 1 in d⁶-DMSO

Fig. S2. IR spectrum of 1 in in KBr disk.

Fig. S3. Time-resolved spectroscopic monitoring of 1 in crystals without UV lamp irradiation.

Fig. S4. Fatigue resistance of 1 with the irradiation of UV lamp and standing in the dark alternatively.

Fig. S5. Images of **1** before and after certain irradiation by a UV lamp (365 nm) (a and b) and corresponding fluorescent images under UV lamp (c and d).

Fig. S6. Fluorescence spectra of 2 (50 μ M) in EtOH/water mixtures with different water fractions. Inset: effect of water volume on the FI at 560 nm, λ_{ex} = 350 nm.

Fig. S7. Fluorescence spectra of 3 (50 μ M) in EtOH/water mixtures with different water fractions. Inset: effect of water volume on the FI at 500 nm, λ_{ex} = 350 nm.

Fig. S8. Fluorescence spectra of 4 (50 μ M) in EtOH/water mixtures with different water fractions. Inset: effect of water volume on the FI at 525 nm, λ_{ex} = 350 nm.

Fig. S9. UV-vis spectra of 1 in different content of water. Inset, absorbance changes at 340 and 280 nm.

Fig. S10. Fluorescence spectra of 2 (50 μ M) in aqueous solution at different pH. Inset: Fl change with the pH values

Fig. S11. Fluorescence spectra of 3 (50 μ M) in aqueous solution at different pH. Inset: FI change with the pH values.

Fig. S12. Fluorescence spectra of 4 (50 μ M) in aqueous solution at different pH. Inset: Fl change with the pH values

Fig. S13. Fluorescence spectra of 1 (0.1 μ M) in water with different concentrations of RhB (0-0.1 μ M).

Fig. S14. IR spectra of 1 and in the presence of Al^{3+} or Cu^{2+} as KBr pelts.

Fig. S15. ESI -MS of compound 1 in DMSO.

Fig. S16. ESI -MS of compound 1 with 0.5 equiv. Al³⁺ in DMSO.

Fig. S17. ESI -MS of compound 1 with 1.0 equiv. AI^{3+} in DMSO.

Fig. S18. ESI -MS of compound 1 with 0.5 equiv. Cu^{2+} in DMSO and H₂O mixture.

Fig. S19. ESI -MS of compound 1 with 1.0 equiv. \mbox{Cu}^{2+} in DMSO and $\mbox{H}_2\mbox{O}$ mixture.