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Figure S1. Pictures of EFZO samples with different Eu and F doping concentration. 

Figure S2. Photoluminescence spectra of the ZnO and EFZO samples.

The photoluminescence spectra of EFZO samples were measured with excitation 
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wavelength of 325 nm, which mainly shows emission characteristics of ZnO. 

Luminescence peaks centered around 380 nm and 500 nm presented in the spectra are 

attributed to the near band-edge (NBE) due to free excitonic emission [1-2], and are related 

to native point defects such as VO and VZn [3], respectively. F doping has been reported 

to first fill oxygen vacancy before replacing oxygen sites, because an oxygen vacancy has 

the lowest formation energy [4-5]. F doping has decreased concentration of oxygen 

vacancy, as an effective dopant and a defect-passivation agent, and thus has better 

crystallinity and increases carrier mobility, due to the substitutional doping of O ions with 

F ions and the filling of O-related defect sites [6]. Violet emission at 400 nm from 

undoped ZnO is not NBE transition (around 380 nm), which should derive from 

polycrystal of ZnO prepared by ion-assisted electron beam evaporation, different from 

single crystal of ZnO. These phenomena also happened in the work of Rotella et al. [3]. 

With the doping of EuF3, corresponding to 1.5%, 2% and 3% EFZO samples, a clear 

blueshift is observed that represents the NBE transition. This transformation indicates 

that crystallinity has been improved significantly compared to undoped ZnO. A rational 

interpretation for blueshift is attributed to a band gap changing phenomenon by the 

higher carrier concentration through cation-doping in ZnO [5].

Simultaneously, a significant decrease in the intensity of the visible emission around 

500 nm can result from a decrease in O vacancies, which indicates that F filing O 

vacancies leads to better crystallinity. However, compared with 1.5%, 2% doping, Eu and 

F excessively addition doping, 3%, the intensity of the visible emission increases slightly, 

but is lower than that of undoped ZnO, which shows the increase of VZn with Eu% that 

is in accordance with the work of Rotella et al.[3]. Furthermore, according to Wang et al, 

VZn formation energy reduces with Al content [7], and the increased Zn vacancies 

concentration would result in the increase of the lattice parameter [3]. Similar to Al doping, 

Eu doping should have a similar effect. As showed in Fig. S2, spectral peaks around 500 

nm for 1.5%, 2%, and 3% EFZO have decreased considerably in comparison with that of 
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ZnO. Nevertheless, peaks of 3% EFZO has increased relative to 1.5%, 2% EFZO. This 

shows that F doping has reduced oxygen vacancy indeed, but an excessive doping as in 3% 

EFZO has increased the Zn vacancy concentration. The lattice parameter should increase. 

However, the lattice parameter of 3% EFZO has decreased in comparison with that of 2% 

EFZO, and the mobility decreased dramaticly yet.

The mobility decreases accompanied by a saturation of the charge carriers 

concentration [3]. Moreover, the mobility is mainly dominated by the ionized impurity 

scattering [8]. As a result, an increase of grain boundary density leads to the enhancement 

of scattering rate [2]. This has indicated that Eu and F codoping has a 

complementary effect to the reduction of lattice distortion. Thus we infer that Eu and F 

codoping should improve the properties of ZnO thin film, thereby suppressing the lattice 

deformation and increasing the mobility. 

Finally, the small amount of Eu and F addition in ZnO acts as a point defect killer, and 

thus removes the in-grain scattering centers. However, heavily doping increases grain 

boundary scattering, causes a severe deterioration of crystallinity, and become the 

mobility limiting mechanism [9].
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Figure S3.  Molecular structure of the organic materials used in OLEDs. 

Figure S4. PL spectrum of QDs and EL spectrum of QLEDs in a broader spectrum scope. 
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Figure S5. Photograph of the EFZO-based QLED.

Figure S6. Hole injection efficiency (JINT/JSCL) of different electrodes as a function of 
electric field for the hole-only devices. 

Hole injection efficiency was calculated by ηINJ=JINJ/JSCL, where JINJ and JSCL are the 

measured current density and the calculated theoretical value of the space-charge-limited 

current (SCLC). The two hole injection devices have the following structures: 
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1.5 % EuF3 device:  1.5 % EuF3 : ZnO/TCTA (100 nm)/LiF (1 nm) /Al; 

2.0 % EuF3 device:  2.0 % EuF3: ZnO /TCTA (100 nm) /LiF (1 nm)/Al.

The results show that 1.5% EuF3 doped ZnO film has a higher hole injection efficiency 

than 2.0% EuF3 doped ZnO film, and is better to serve as an anode for OLEDs.

Table S1. The electrical parameters of EFZO films with varying dopant contents

Eu/F: ZnO sample
Resistivity

[Ω·cm]
Carrier density
[cm−3]

Mobility

[cm2/Vs]

Work function
[eV]

1.75% Eu2O3 9.08E-03 -3.04E+19 22.6 4.97

0.9% EuF3

0.9% Eu2O3
1.43E-03 -1.34E+20 32.5 4.88

1.5% EuF3 6.15E-04 -1.76E+20 57.8 4.92

1.75% EuF3 5.70E-04 -1.86E+20 58.8 4.9

2% EuF3 5.57E-04 -1.93E+20 58.1 4.88

3% EuF3 9.41E-04 -1.58E+20 42.1 4.89

5% EuF3 3.01E-03 -9.47E+19 21.9 4.97

ZnO 4.08E-02 -3.74E+18 40.9 4.9

Table S2. Comparison of EL characteristics of OLEDs
Device Anode Von

[V]
Lmax

[cd/m2]
CEmax

[cd/A]
EQEmax

[%]
LEmax

[lm/w]

OLED EFZO 2.47 103000 60.3 20.9 76.65

OLED ITO 3.09 112000 54.76 19.8 55.68

Von: turn-on voltage, obtained at a luminance of 1 cd/m2; Lmax: maximum luminance; 
CEmax: maximum current efficiency; LEmax: maximum luminous efficiency; EQEmax: 
maximum external quantum efficiency.
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Table S3. Comparison of EL characteristics of QLEDs
Device Cathode Von

[V]
Lmax

[cd/m2]
CEmax

[cd/A]
EQEmax

[%]
LEmax

[lm/w]

QLED EFZO 3.66 128000 21.6 4.21 8.97

QLED ITO 3.48 117000 18.2 4.25 8.41

Von: turn-on voltage, obtained at a luminance of 1 cd/m2; Lmax: maximum luminance; 
CEmax: maximum current efficiency; LEmax: maximum luminous efficiency; EQEmax: 
maximum external quantum efficiency.

Table S4. The electrical and optical properties of ITO used in the reference device

Resistivity
[Ω·cm]

Carrier 
density
[cm−3]

Mobility

[cm2/Vs]

Work 
function
[eV]

Average
transmittance  
(400-700 nm)
[%]

Film
Thickness
[nm]

ITO 3.9E-04 6.1E+20 26.8 4.65 86.5 120

References

[1] J. Alloy. Compd. 2015, 646, 56-62.

[2] J. Phys. Chem. C 2017, 121, 16012−16020.

[3] J. Phys. D: Appl. Phys. 2017, 50, 485106.

[4] Appl. Phys. Lett.2010, 97, 122101.

[5] Sol. Energ. Mat. Sol. C. 2015, 132, 403-409.

[6] J. Mater. Chem. C, 2014, 2, 98-108.

[7] Appl. Phys. Lett. 2012, 100, 132407.

[8] Thin Solid Films 2000, 366, 63-68.

[9] J. Appl. Phys. 2006, 100, 063701.



S9


