Supporting information

## **Bottom-up Fabrication of Graphene-based Conductive Polymer Carpets for Optoelectronics**

Tao Zhang<sup>1</sup>, Raul D. Rodriguez<sup>\*2,3,4</sup>, Ihsan Amin<sup>\*1,3,5</sup>, Jacek Gasiorowski<sup>2</sup>, Mahfujur Rahaman<sup>2</sup>, Wenbo Sheng<sup>1</sup>, Jana Kalbacova<sup>2,3</sup>, Evgeniya Sheremet<sup>2,4</sup>, Dietrich R.T. Zahn<sup>2,3</sup>, Rainer Jordan<sup>\*1,3</sup>

<sup>1</sup>Chair of Macromolecular Chemistry, School of Science, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany

<sup>2</sup>Semiconductor Physics, Technische Universität Chemnitz, 09107 Chemnitz, Germany

<sup>3</sup>Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany.

<sup>4</sup>Tomsk Polytechnic University, 30 Lenin Ave, 634050 Tomsk, Russia.

<sup>5</sup>Junior Research Group Biosensing Surfaces, Leibniz Insitute for Plasma Science and Technology, INP Greifswald e.V., Felix-Hausdorff-Strasse 2, 17489 Greifswald, Germany

\*raulmet@gmail.com; ihsan.amin@inp-greifswald.de; rainer.jordan@tu-dresden.de



**Figure S1.** <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) spectrum of P3HT collected from solution. (a) Whole spectrum. (b) A close-up of aromatic proton region. The d1 - d3 represent the defects in the P3HT structure. (c) A close-up of  $\alpha$ -methylene  $\beta$ -methylene proton regions. All regions indicate that the P3HT has high percentage of regioregular head-to-tail (HT) linkage (> 95%).



Figure S2. Gel permeation chromatography traces for P3HT polymer collected from

solution.  $M_n = 12000$  g/mol,  $\mathcal{D} = 1.5$ .



**Figure S3.** Monolayer layer graphene. (a) AFM topography and (b) height profile of single layer graphene on 300 nm SiO<sub>2</sub>/Si.



**Figure S4**. Development of PSBr and P3HT thickness with reaction time. (a) PSBr thickness vs. SIPGP reaction time. (b) P3HT thickness vs. SI-KCTP reaction time.



**Figure S5.** XPS survey spectrum and high resultion element scan of Br3d, S2s and C1s of the (a) PSBr modified graphene and the same sample after grafting of (b) P3HT by SI-KCTP.



**Figure S6.** GI-XRD of G-PS-P3HT on 300 nm SiO<sub>2</sub>/Si wafer. The two sets of curves (black and red) are belong to two identical samples.



**Figure S7.** Representative I-V characteristics collected by conductive mode atomic force microscopy for (a) single layer graphene and (b) 200 nm thick G-PS-P3HT carpets on Au coated Si wafer substrate.



**Figure S8.** Raman spectra of the 2D band region for graphene and graphene/PSBr. The invariability of the 2D peak width reflects the preservation of crystallinity of graphene after functionalization. The doping/charge effect of PSBr is reflected as the shift in peak position.



**Figure S9.** Micropatterned G-PS-P3HT. (a) Schematic illustrations showing the fabrication processes by SIPGP of 4-bromostyrene using a mask, followed by SI-KCTP of 3-hexylthiophene. (b) Topography image obtained by AFM and (c) the height profile corresponding to the dashed line in the AFM image, inset: optical micrograph of microstructured G-PS-P3HT. (d) Mapping of integrated Raman intensity of P3HT shows only minor amounts of polymer traces appeared in the non-irradiated parts (branches) probably due to physical adsorption



**Figure S10.** Height and conductive AFM imaging. (a) AFM topography and (b) conductive image of p-n heterostructure of  $MoS_2$  flakes deposited on G-PS-P3HT surface. A significantly high photocurrent was observed on the P3HT region where  $MoS_2$  introduced.