Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information

Functionalized phenylimidazole-based facial-homoleptic iridium(III) complexes and their

excellent performance in blue phosphorescent organic light-emitting diodes

Youngjae Kwon,^{‡a} Si Hyun Han,^{‡b} Seokhyeon Yu^a, Jun Yeob Lee^{*b} and Kang Mun Lee^{*a}

^a Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National

University, Chuncheon, Gangwon 24341, Republic of Korea

^b School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon,

Gyeonggi 16419, Republic of Korea

*‡ The first, second, and third authors contributed equally to this work *E-mail: leej17@skku.edu *E-mail: kangmunlee@kangwon.ac.kr*

Compound	FIr ·(<i>n</i> -hexane)	CNIr	
Formula	C ₆₉ H ₈₀ F ₃ IrN ₆	C ₆₆ H ₆₆ IrN ₉	
Fomula weight	1242.59	1177.47	
Crystal system	Monoclinic,	Monoclinic	
Space group	<i>P2(1)/n</i>	P2(1)/n	
<i>a</i> (Å)	13.994(3)	14.985(3)	
<i>b</i> (Å)	21.759(4)	26.651(5)	
<i>c</i> (Å)	23.610(5)	17.246(3)	
α (°)	90	90	
β (°)	97.437(8)	102.60(3)	
γ (°)	90	90	
$V(Å^3)$	7129(2)	6721(2)	
Ζ	4	4	
$\rho_{\rm calc}({\rm g~cm^{-3}})$	1.158	1.164	
$\mu (\mathrm{mm}^{-1})$	1.920	2.028	
<i>F</i> (000)	2560	2408	
<i>T</i> (K)	223(2)	293(2) K 2.068 to 28.356°.	
Scan mode	multi	multi	
	$-18 \rightarrow +18$,	–20→+20,	
hkl range	$-29 \rightarrow +28,$	–35→+35,	
	$-31 \rightarrow +31$	-23→+21	
Measd reflns	235130	247154	
Unique reflns [R _{int}]	17785 [0.0807]	16757 [0.1033]	
Reflns used	17785	1,0757	
for refinement	17785	16/5/	
Refined parameters	726	697	
R_1^a (I>2 σ (I))	0.0429	0.0463	
wR_2^b all data	0.1081	0.1544	
GOF on F^2	1.025	1.021	
$ ho_{\rm fin}$ (max/min) (e Å ⁻³)	0.683, -0.353	0.810, -0.715	

Table S1 Crystallographic data and parameters for FIr and CNIr

 $\frac{|F_{0.010}|^{-1}}{|F_{0.010}|^{-1}} = \frac{|F_{0.010}|^{-1}}{|F_{0.010}|^{-1}} = \frac{|F$

FIr			CNIr		
lengths (Å)					
Ir–C1	2.020(3)	Ir–C1	2.017(5)		
Ir-C22	2.009(3)	Ir-C22	2.011(5)		
Ir-C43	2.017(3)	Ir-C43	2.013(5)		
Ir–N1	2.111(3)	Ir-N1	2.125(4)		
Ir-N3	2.114(3)	Ir-N3	2.116(4)		
Ir–N5	2.108(3)	Ir-N5	2.094(4)		
angles (°)					
C1–Ir–C22	94.78(12)	C1–Ir–C22	96.21(18)		
C1–Ir–C43	93.87(12)	C1–Ir–C43	95.03(18)		
C22–Ir–C43	94.53(13)	C22–Ir–C43	94.64(19)		
C1–Ir–N5	171.27(11)	C1–Ir–N5	88.56(17)		
C22–Ir–N5	91.40(11)	C22-Ir-N5	172.86(17)		
C43–Ir–N5	79.47(11)	C43–Ir–N5	79.61(18)		
C1–Ir–N1	79.13(11)	C1–Ir–N1	79.28(17)		
C22–Ir–N1	173.26(11)	C22–Ir–N1	94.17(17)		
C43–Ir–N1	88.82(12)	C43–Ir–N1	169.98(18)		
C1–Ir–N3	93.38(11)	C1–Ir–N3	174.31(18)		
C22–Ir–N3	79.14(11)	C22-Ir-N3	79.22(17)		
C43–Ir–N3	170.74(11)	C43–Ir–N3	88.76(18)		
N1–Ir–N3	98.19(10)	N1–Ir–N3	97.56(16)		
N1–Ir–N5	94.96(10)	N1–Ir–N5	91.93(16)		
N3–Ir–N5	93.83(10)	N3–Ir–N5	96.31(17)		

Table S2 Selected bond lengths (Å) and angles (°) for FIr and CNIr

Fig. S1 ¹H (top), ¹³C (middle) and ¹⁹F NMR spectrum of **FL** (* from residual CHCl₃ in CDCl₃).

Fig. S2 ¹H (top) and ¹³C (bottom) NMR spectrum of CNL (* from residual CHCl₃ in CDCl₃).

Fig. S3 ¹H (top), ¹³C (middle) and ¹⁹F NMR spectrum of *fac*-**FIr** (* from residual CHCl₃ in CDCl₃).

Fig. S4 ¹H (top) and ¹³C (bottom) NMR spectrum of *fac*-CNIr (* from residual CHCl₃ in CDCl₃).

Fig. S5 Cyclic voltammograms (CV) of (a) **FIr** and (b) **CNIr** showing oxidation and reduction $(5 \times 10^{-4} \text{ M in DCM}, \text{ scan rate: } 100 \text{mV/s}).$

Fig. S6 Emission decay curves of FIr and CNIr (5 wt% doped in mCP film)

Fig. S7 TGA curves of FIr and CNIr

Fig. S8 (a) EL spectra of the OLEDs using **FIr** and **CNIr** (3%) with mCP, (b) luminance(L)-voltage(V) characteristics (the inset shows current density(*J*)-voltage(*V*) characteristics) and (c) external quantum efficiency-current efficiency-luminance(*L*) characteristics of the devices.

Fig. S9 (a) EL spectra of the OLEDs using **FIr** and **CNIr** (10%) with mCP, (b) luminance(L)-voltage(V) characteristics (the inset shows current density(*J*)-voltage(*V*) characteristics) and (c) external quantum efficiency-current efficiency-luminance(*L*) characteristics of the devices.

Fig. S10 (a) EL spectra of the OLEDs using **FIr** and **CNIr** (15%) with mCP, (b) luminance(L)-voltage(V) characteristics (the inset shows current density(*J*)-voltage(*V*) characteristics) and (c) external quantum efficiency-current efficiency-luminance(*L*) characteristics of the devices.

Fig. S11 (a) EL spectra, (b) luminance(*L*)–voltage(*V*) characteristics (the inset shows current density(*J*)–voltage(*V*) characteristics) and (c) external quantum efficiency–current efficiency–luminance(*L*) characteristics of the **CNIr** based device structure: ITO (50 nm)/BPBPA:HATCN (40 nm:30 wt%)/BPBPA (10 nm)/PCZAC (10 nm)/(mCBP:DBFTrz):**CNIr** ((50:50%):20 wt%) (30 nm)/DBFTrz (5 nm)/ZADN (20 nm)/LiF (1.5 nm)/Al (200 nm).