Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Supplementary Information

Yellow-Emitting Carbon Dots Impregnated Carboxy Methyl Cellulose/Poly-vinyl-alcohol and Chitosan: Stable, Free-Standing, Enhanced Quenching for Cu²⁺ions Sensor

Qian Wu,^a Xiaojie Wang,^a Rasaki Sefiu Abolaji,^b Tiju Thomas,^c Chuanxi Wang,^{*b} Chi Zhang^{*a,d} and Minghui Yang^{*b}

^aInternational Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical & Material Engineering, Jiangnan University, Wuxi 214122, P. R. China

^bInstitute of New Energy Technology, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, P. R. China

^cIndian Institute of Technology Madras, Department of Metallurgical and Materials Engineering, Chennai 600036, Tamil Nadu, India

^d School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China.

E-mail: wangcx@nimte.ac.cn; myang@nimte.ac.cn; chizhang@tongji.edu.cn

Figure S1. Excitation-independence spectra of y-CDs in aqueous solution.

Figure S2. (a, c, e) PL ($\lambda_{ex} = 400 \text{ nm}$) emissions and (b, d, f) PL intensity of the y-CDs aqueous solution (6 mg/mL): (a, b) under different ionic strengths (NaCl aqueous solution); (c, d) under different pH values; (e, f) under a 450 W xenon lamp at various time.

Figure S3. (a) PL emission (λ_{ex} = 400 nm) spectra of selectivity of y-CDs toward Cu²⁺ ions; (b) Photograph of the y-CDs aqueous solution (6 mg/mL) with the addition of different metal ions (0.5 mM).

Figure S4. (a) Optical photographs of y-CDs aqueous solution (6 mg/mL) with different concentrations of Cu^{2+} ions from 0 to 1.0×10^{-2} M; (b) Linear plot of PL intensity of y-CDs aqueous solution versus Cu^{2+} ions with a certain concentration gradient.

Figure S5. Effects of Cu²⁺ ions on the (a) absorption; (b) ζ -positial value of the y-CDs in aqueous solution (c) lifetime of the y-CDs aqueous solution. Cu²⁺ ions:1E-4 (1× 10⁻⁴ M), 1E-3 (1× 10⁻³ M).

Figure S6. (a) Optical photographs of virions concentration of y-CDs aqueous solution; 15 mg/mL; 10 mg/mL; 5 mg/mL; 1 mg/mL; 0.5 mg/mL; 0.1 mg/mL; 0.05 mg/mL with adding Cu²⁺ ions (0.1 mM); (b) PL emission and (c) PL intensity of the corresponding solution emission.

Figure S7. Selectivity of (a) y-CDs/PVA/CMC films and (b) y-CDs/chitosan films towards Cu^{2+} ions.

Figure S8. TEM images of y-CDs/PVA film with adding 1.0×10^{-2} M Cu²⁺ ions.

Figure S9. (a) Transmission spectra and (b) PL emission ((λ_{ex} =430 nm) spectra of y-CDs/chitosan films with different ratios (weight of y-CDs/weight of chitosan)