Supporting Information for

Interfacial Electronic States and Self-Formed *p-n* Junctions in

Hydrogenated MoS₂/SiC Heterostructure

Qinglong Fang ^a, Xumei Zhao ^b, Yuhong Huang ^c, Kewei Xu ^{a,d}, Tai Min ^a, Paul K. Chu ^{e,*},

Fei Ma^{a,e,*}

^a State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University,

Xi'an 710049, Shaanxi, China

^b College of Materials Science and Engineering, Shaanxi Normal University, Xi'an

710062, Shaanxi, China

^c College of Physics and Information Technology, Shaanxi Normal University, Xi'an

710062, Shaanxi, China

^d Department of Physics and Opt–electronic Engineering, Xi'an University of Arts and

Science, Xi'an 710065, Shaanxi, China ^e Department of Physics and Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China

* Corresponding authors.

E-mail addresses: mafei@mail.xjtu.edu.cn (F. Ma); paul.chu@cityu.edu.hk (Paul K. Chu).

Fig. S1. Optimized geometries for $4 \times 4 \times 1$ supercell of monolayers (a) MoS₂ and (b) SiC.

Table S1 Bond lengths of Si-C (L_{Si-C}), C-H (L_{C-H}), and Si-H (L_{Si-H}), and buckling height h (Å) of SiC sheet with or without hydrogenation.

System	$L_{\text{Mo-S}}$ (Å)	$L_{\text{Si-C}}$ (Å)	$L_{\mathrm{Si-H}}\left(\mathrm{\AA}\right)$	<i>L</i> _{С-Н} (Å)	h (Å)
SiC		1.787			
H-SiC		1.858	1.524		0.379
SiC-H		1.878		0.903	0.473
H-SiC-H		1.891	1.108	1.496	0.574

Fig. S2. Top and side views of the MoS₂/SiC heterostructure with different stacking configurations: (a) Mo and S atoms over Si and C atoms, respectively; (b) Mo and S atoms over Si atoms and hollow sites, respectively; (c) Mo and S atoms over C atoms and hollow sites, respectively; (d) Mo and S atoms over C and Si atoms, respectively; (f) Mo and S atoms over hollow sites and Si atoms, respectively; (f) Mo and S atoms over hollow sites and C atoms, respectively.

Fig. S3. Binding energy per S atom of MoS_2/SiC as a function of the interlayer distance (d₀) between the topmost S atom of MoS_2 and SiC in the MoS_2/SiC heterostructure.

To evaluate the interfacial interaction, the binding energy between monolayer MoS₂ and the SiC substrate is calculated as $E_b = (E_{MoS_2/SiC} - E_{MoS_2} - E_{SiC})/N_S$, in which $E_{MoS_2/SiC}$, E_{MoS_2} , and E_{SiC} are energies of the MoS₂/SiC heterostructure, isolated monolayer MoS₂, and monolayer SiC, respectively, N_S is the number of S atoms in the supercell of MoS₂/SiC heterostructure. If E_b is negative, the configuration should be stable, and the larger the absolute value is, the stronger is the interaction between monolayer MoS₂ and SiC. As shown in Fig. S3, all the six stacking configurations have the negative E_b value, indicating that the MoS₂/SiC heterostructure is energetically favorable. Although the absolute value of binding energy of the MoS₂/SiC heterostructure is slightly larger than that of monolayer MoS₂ on silicene (-64 meV per S atom) and on germanene (-71 meV per S atom),¹ MoS₂ is bonded onto SiC via van der Waals interaction. The interlayer distance (d₀) changes in the range of 2.928-3.637 Å, characteristic of physical adsorption between monolayer MoS₂ and SiC, and the in–plane structure changes little.

Fig. S4. Optimized structures of partially hydrogenated SiC sheet: (a) H-SiC and (b) SiC-H, and (c) and (d) the band structures, (e) and (f) the magnetic densities. Black and red lines are used to indicate the spin-up and spin-down channels, respectively. The Fermi level is set at 0 eV. The red surface corresponds to the magnetic density isosurface of $0.02 \text{ e}^{\text{A}-3}$.

SiC is partially hydrogenated on Si sites (labeled as H-SiC) or C sites (labeled as SiC-H), the optimized structures and structural parameters are given in Fig. S4 and Table S1, respectively. The lattice constants of H-SiC and SiC-H are a=b=3.151 Å and a=b=3.147 Å, respectively, that is, they are enlarged upon hydrogenation. Moreover, the hybridization states are changed from sp^2 to sp^3 . The optimized Si-H/C-H bond length in H-SiC/ SiC-H is 1.524 Å/0.903 Å, and the buckling heights on H-SiC and SiC-H are 0.379 Å and 0.473 Å, respectively.² The partially hydrogenated SiC is still a semiconductor, and spin polarization emerges (Fig. S4c,d). In essential, hydrogenation on Si (C) atoms produces Si-H (C-H) bonds and the dangling bonds of C (Si) atoms on surface are spin unpaired. The spin polarization is localized on Si and H in SiC-H and H-SiC, respectively (Fig. S4e,f).

Fig. S5. Magnetization density of MoS_2 on the half-hydrogenated SiC. The red surface corresponds to the spin density isosurface of 0.01 /Å³.

Fig. S6. The density of states of the MoS_2 -b and MoS_2 -t in MoS_2 -H-SiC-MoS_2-based device with Au as the electrode.

References

- 1 M. Brandbyge, J. -L. Mozos, P. Ordejón, J. Taylor and K. Stokbro, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2002, **65**, 165401.
- 2 Y. Ma, L. Kou, A. Du and T. Heine, Nano Res., 2015, 8, 3412-3420.