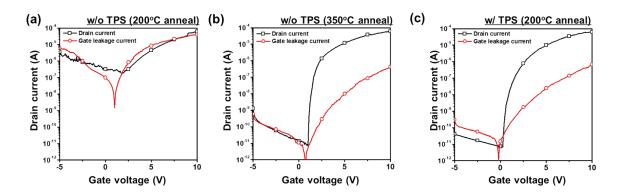
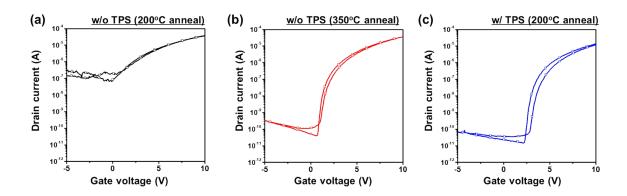
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Supporting Information

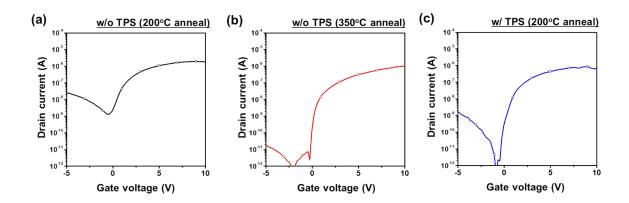
Low-temperature fabrication of solution-processed HfOx gate insulator using thermally purified solution process


Jusung Chung^a, ‡, Young Jun Taka, Won-Gi Kim^a, Jeong Woo Park^a, Tae Sang Kim^b, Jun Hyung Lim^b and Hyun Jae Kim^a,*

^aSchool of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea.


bFrontier Technology Team, Display Research Center, Samsung Display, 1 Samsung-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 17113 Republic of Korea

*E-mail: hjk3@yonsei.ac.kr


‡ - Dual Contributors

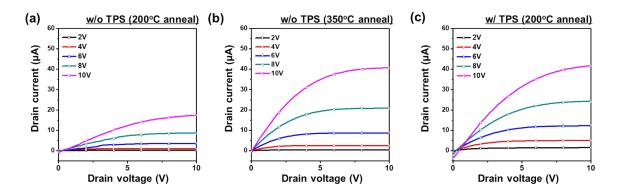

Figure S1. Gate leakage current of In₂O₃ TFT with HfO_x without TPS annealed at (a) 200°C, (b) 350°C, and (c) with TPS annealed at 200°C

Figure S2. Hysteresis characteristics of In_2O_3 TFT with HfO_x without TPS annealed at (a) $200^{\circ}C$, (b) $350^{\circ}C$, and (c) with TPS annealed at $200^{\circ}C$

Figure S3. Transfer characteristics at linear region of In₂O₃ TFT with HfO_x without TPS annealed at (a) 200°C, (b) 350°C, and (c) with TPS annealed at 200°C

Figure S4. Output characteristics of In₂O₃ TFT with HfO_x without TPS annealed at (a) 200°C, (b) 350°C, and (c) with TPS annealed at 200°C