Supporting information for

Aggregation-Free Sensitizer Dispersion in Rigid Ionic Crystals for Efficient Solid-State Photon Upconversion and Demonstration of Defect Effects

Taku Ogawa,^a Nobuhiro Yanai,^{*a,b} Saiya Fujiwara^a Thuc-Quyen Nguyen,^c and Nobuo Kimizuka^{*a}

^a Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.

^b PRESTO, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan.

^c Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA 93106, USA

E-mail: yanai@mail.cstm.kyushu-u.ac.jp; n-kimi@mail.cstm.kyushu-u.ac.jp

Figure S1. FT-IR spectra of ADCA (blue) and DCA₂ADC (green) powder samples.

Figure S2. Photoluminescence decays of (DCA)₂ADC in 10 μ M MeOH solution (blue) and solid crystals (green). The excitation wavelength was selected as λ_{ex} = 365 nm and decays were obtained at 440 nm. Fitting lines are indicated by red lines.

	(DCA) ₂ ADC crystals	PdMesoP-(DCA)2ADC crystals
Crystal system	Monoclinic	Monoclinic
Space group	P21/c	P21/c
a (□)	9.7956(7)	9.807(3)
b (🗆)	17.7834(15)	17.777(5)
$c(\Box)$	10.0007(8)	10.025(3)
α (\Box)	90	90
β (\Box)	99.394(3)	99.418(3)
$\gamma(\Box)$	90	90
Final R indices	0.0492	0.0446

Table S1. Cell parameters of (DCA)₂ADC crystals and PdMesoP-(DCA)₂ADC crystals

Figure S3. Photoluminescence decays of $(DCA)_2ADC$ crystals (green) and PdMesoP- $(DCA)_2ADC$ crystals (purple). The excitation wavelength was selected as λ_{ex} = 365 nm and decays were obtained at 440 nm. Fitting lines are indicated by red lines.

Figure S4. UV-vis absorption spectra of PtOEP-(DCA)₂ADC crystals (purple), diluted THF solution of PtOEP (10 µM, blue) and bulk PtOEP solid (red).

Figure S5. Double logarithmic plots of the UC PL intensity of PdMesoP-(DCA)₂ADC crystals as a function of the excitation intensity. Linear fits with slope 2 and 1 in the lower and higher excitation intensity regimes are shown.

Figure S6. A PXRD pattern of PdMesoP-(DCA)₂ADC powder (green) and a simulated pattern of (DCA)₂ADC from its single crystal structure measured (gray).

Figure S7. SEM image of PdMesoP-(DCA)₂ADC ground powder.

Figure S8. UV-vis absorption spectra (solid lines) and emission spectra (broken lines) of single crystals (red) and ground powder (green) of PdMesoP-(DCA)₂ADC. The excitation wavelength was selected as λ_{ex} =365 nm.

Figure S9. Photoluminescence spectra of PdMesoP-(DCA)₂ADC ground powder prepared under Ar atmosphere with various excitation intensities (λ_{ex} = 532 nm). The scattered incident light was removed by using a 532 nm notch filter.

Figure S10. Photoluminescence decays at 435 nm for (a) single crystals and (b) ground powder of PdMesoP-(DCA)₂ADC. The blue fitting curves were obtained by considering the equation (2) in the main text. Insets show magnifications at faster decay range.