Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Eu³⁺/Tb³⁺ and Dy³⁺ POM@MOFs and 2D coordination polymers based on pyridine-2,6-dicarboxylic acid for ratiometric optical temperature sensing

Anna M. Kaczmarek

Fig. S1 Top: powder XRD diffractograms of POM@MOF samples (LaPOM@MOF, Eu,TbPOM@MOF, DyPOM@MOF), bottom: powder XRD diffractogram simulated based on single crystal LaPOM@MOF.

Fig. S2 Top: powder XRD diffractograms of 2D sheet samples (**Eu,Tb 2D Sheets**, **Dy 2D sheets**), bottom: powder XRD diffractogram simulated based on single crystal **Eu,Tb 2D sheets**.

Sample	Molar	amount used	in synthesis [mmol]	La ³⁺	+ ion	Eu ³⁻	+ ion	Tb ³	+ ion	Dy ³⁺	ion
	La(NO ₃) ₃	Eu(NO ₃) ₃	Tb(NO ₃) ₃	Dy(NO ₃) ₃	Calcd.	XRF	Calcd.	XRF	Calcd.	XRF	Calcd.	XRF
Eu,Tb	0.90	0.05	0.05	х	90%	89.9%	5%	7.1%	5%	3.0%	х	х
POM@MOF												
Dy	0.90	х	х	0.10	90%	99.2%	х	х	х	х	10%	0.8%
POM@MOF												
Eu,Tb	х	0.50	0.50	х	х	х	50%	43.9%	50%	56.1%	х	х
2D sheets												

Table S1. Relative Ln³⁺ contents for the LnPOM@MOF and Ln 2D sheets samples during synthesis (calcd.) and as determined by XRF.

Table S2 Assignment of peaks labeled in Fig. 3 (Eu,TbPOM@MOF).

Peak	Wavelength (nm)	Wavenumber	Transition
		(cm ⁻¹)	
	Ex	citation	
а	278.8	35868	$\pi \rightarrow \pi^*$
	Er	nission	
b	488.7	20462	${}^{5}D_{4} \rightarrow {}^{7}F_{6}$ (Tb)
c	542.5	18433	⁵ D ₄ → ⁷ F ₅ (Tb)
d	591.7	16900	${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ (Eu)
e	614.4	16276	${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ (Eu)
f	648.8	15413	${}^{5}D_{0} \rightarrow {}^{7}F_{3}$ (Eu)
g	694.3	14403	⁵ D ₀ → ⁷ F ₄ (Eu)

Fig. S3 Plot presenting the calibration curve for compound **Eu,TbPOM@MOF** when equation 2 (Δ_2) is employed. The points represent the experimental Δ_2 parameters and the solid line shows the best fit of the experimental points using equation 2. The calculated integrated areas were: 530.0 – 560.0 nm for Tb³⁺ and 603.0 – 635.0 nm for Eu³⁺. When fitting the data points with equation 2 R² = 0.94033.

different temperatures for Eu, I bPOM@MOF compound.						
Temperature [K]	x coordinate	y coordinate	CCT [K]			
60K	0.281	0.258	12575			
110K	0.285	0.256	12109			
160K	0.321	0.283	6390			
210K	0.432	0.359	2685			
260K	0.490	0.383	2133			
310K	0.522	0.388	1880			
360K	0.519	0.384	1875			

Table S3. CIE color coordinates (x, y) and CCT calculated at different temperatures for **Eu,TbPOM@MOF** compound.

Fig. S4 Top: plot presenting the absolute sensitivity Sa values at varied temperatures (60K – 360K); bottom: plot presenting the relative sensitivity Sr values at varied temperatures (60K – 360K) for **Eu,TbPOM@MOF** compound. The solid lines are guides for eyes. Sa and Sr were calculated based on results obtained from Δ_3 (see Fig. 5 in paper).

Idi	Table 54 Decay times recorded for Ed, I DFOM@MOF compound.							
Temp.	T_1	T_2	Average	R ²	T_1	T_2	Average	R ²
[K]	decay	decay	decay Eu ³⁺		decay	decay	decay	
	Eu ³⁺	Eu ³⁺	[µs]		Tb ³⁺	Tb ³⁺	Tb ³⁺ [μs]	
	[µs]	[µs]			[µs]	[µs]		
60	1484	422	1235	0.998	679	161	436	0.998
160	1445	527	1129	0.998	489	94	312	0.996
260	1447	428	1122	0.998	1143	106	684	0.996
298	1346	321	1094	0.997	1244	50	647	0.990
360	1064	166	904	0.996	1091	38	375	0.974

Table S4 Decay times recorded for Eu, TbPOM@MOF compound.

Fig. S5 Combined emission-excitation spectrum of **DyPOM@MOF** recorded at RT.

Table SE Accim	nmont of poole	a labolad in	Eig CE (I	
Table 55 Assign	ппент ог реак	s labeleu III	ГI <u></u> . 55 (L	JYPUM@MUF).

Peak	Wavelength (nm)	Wavenumber	Transition					
		(cm ⁻¹)						
Excitation								
а	278.8	35868	$\pi \rightarrow \pi^*$					
	Emission							
b	480.0	20833	${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$					
с	571.4	17501	${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$					
d	661.5	15117	${}^{4}F_{9/2} \rightarrow {}^{6}H_{11/2}$					

Fig. S6 Decay profile of DyPOM@MOF.

Fig. S7 Emission map of spectra recorded at 280 – 380K for **Dy POM@MOF**.

· C	0011001	Sinnene of peaks in		Juji D LD Sheets
	Peak	Wavelength (nm) Wavenumber		Transition
_			(cm ⁻¹)	
		Ex	citation	
	а	287.0	34843	$\pi \rightarrow \pi^*$
	b	390.9	25582	⁵ L ₆ ← ⁷ F ₀ (Eu)
	С	462.1	21640	⁵ D ₂ ← ⁷ F ₀ (Eu)
		E	mission	
	d	489.4	20433	⁵ D ₄ → ⁷ F ₆ (Tb)
	e	541.6	18464	⁵ D₄→ ⁷ F₅ (Tb)
	f	594.0	16835	⁵ D ₀ → ⁷ F ₁ (Eu)
	g	614.4	16276	$^{5}D_{0}\rightarrow^{7}F_{2}(Eu)$
	h	647.8	15437	⁵ D ₀ → ⁷ F ₃ (Eu)
	i	695.6	14376	⁵ D ₀ → ⁷ F ₄ (Eu)

Table S6 Assignment of peaks labeled in Fig. 7 (Eu,Tb 2D sheets).

Fig. S8 Plot presenting the calibration curve for compound **Eu,Tb 2D sheets** when equation 2 (Δ_2) is employed. The points represent the experimental Δ_2 parameters and the solid line shows the best fit of the experimental points using equation 2. The calculated integrated areas were: 530.0 – 560.0 nm for Tb³⁺ and 604.0 – 630.0 nm for Eu³⁺. When fitting the data points with equation 2 R² = 0.97042.

Table	S7.	CIE	color	coordinates	(x,	y)	and	ССТ	calculated	at
differe	ent t	empe	erature	es for Eu,Tb 2	2D s	she	ets co	ompo	und.	

Temperature [K]	x coordinate	y coordinate	CCT [K]
110K	0.503	0.450	2460
160K	0.514	0.444	2303
210K	0.531	0.433	2082
260K	0.549	0.419	1863
310K	0.573	0.403	1623
360K	0.617	0.370	1247

Fig. S9 Top: plot presenting the absolute sensitivity Sa values at varied temperatures (60K – 360K); bottom: plot presenting the relative sensitivity Sr values at varied temperatures (60K – 360K) for **Eu,Tb 2D sheets** compound. The solid lines are guides for eyes. Sa and Sr were calculated based on results obtained from Δ_3 (see Fig. 9).

Fig. S10 Plots showing heating, cooling and reheating tests of **Eu,Tb POM@MOF** (top) and **Eu,Tb 2D** sheets (bottom). The **Eu,Tb POM@MOF** material shows lower repeatability (around 95% repeatability) and stability than the **Eu,Tb 2D** sheets material. In the **Eu,Tb 2D** sheets material Δ parameter remains stable throughout the recycle tests.

rabie bo beeay	unico recoraca re		b billeetb compo	anai
Temp. [K]	Decay Eu ³⁺	R ²	Decay Tb ³⁺	R ²
	[µs]		[µs]	
110	722	0.999	109	0.997
210	651	0.999	86	0.997
298	611	0.999	73	0.996
310	587	0.999	61	0.995

Table S8 Decay times recorded for Eu, Tb 2D sheets compound.

Fig. S11 Combined emission-excitation of **Dy 2D sheets** recorded at RT.

		0	
Peak	Wavelength (nm)	Wavenumber	Transition
		(cm ⁻¹)	
	Ex	citation	
а	288.4	34674	$\pi \rightarrow \pi^*$
b	323.5	30912	⁶ P _{3/2} ← ⁶ H _{15/2}
С	336.1	29753	${}^{4}\mathrm{F}_{5/2}$,
			${}^{4}D_{5/2} \leftarrow {}^{6}H_{15/2}$
d	349.3	28629	⁶ P _{7/2} ← ⁶ H _{15/2}
e	363.1	27541	$^{6}P_{5/2} \leftarrow ^{6}H_{15/2}$
f	385.8	25920	⁴ F _{7/2} ← ⁶ H _{15/2}
g	424.5	23557	⁴ G _{11/2} ← ⁶ H _{15/2}
	Eı	nission	
h	481.3	20777	${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$
i	572.1	17479	${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$
j	659.0	15175	${}^{4}F_{9/2} \rightarrow {}^{6}H_{11/2}$

Table S9 Assignment of labeled peaks in Fig. S10 (**Dy 2D sheets**).

Fig. S12 Decay profile of **Dy 2D sheets**.

Fig. S13 Top: plot presenting the absolute sensitivity Sa values at varied temperatures (280K – 370K); bottom: plot presenting the relative sensitivity Sr values at varied temperatures (280K – 370K) for **Dy 2D sheets** compound. The solid lines are guides for eyes. Sa and Sr were calculated based on results obtained from Δ_1 using the peak maxima (see Fig. 11).