Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Supporting information

Gate-tunable interfacial properties of in-plane ML MX₂ 1T'-2H

heterojunctions

Shiqi Liu,^{1,†} Jingzhen Li,^{1,†} Bowen Shi,¹ Xiuying Zhang,¹ Yuanyuan Pan,¹ Meng Ye,¹ Ruge Quhe,³ Yangyang Wang,^{1,4} Han Zhang,¹ Jiahuan Yan,¹ Lingiang Xu,¹ Ying Guo,⁵ Feng Pan,^{6,*} and Jing Lu^{1, 2, *} ¹State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, P. R. China ² Collaborative Innovation Center of Quantum Matter, Beijing 100871, P. R. China ³ State Key Laboratory of Information Photonics and Optical Communications and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China ⁴ Nanophotonics and Optoelectronics Research Center, Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, P. R. China ⁵ School of Physics and Telecommunication Engineering, Shaanxi Sci-Tech University, Hanzhong 723001, P. R. China ⁶ School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, P. R. China Email: jinglu@pku.edu.cn, panfeng@pkusz.edu.cn [†]These authors contributed equally to this work.

Figure S1. (a) ~ (f): Interfacial structures of the contact configuration for the ML MoS_2 1T-2H in-plane and the ML MX_2 1T'-2H in-plane heterojunctions before optimization. The 1T'/1T and 2H phase within one period at the interface are zoomed in the rectangle black dash line.

Figure S2: Energy- and space-dependent typical charge density of the MIGS in the ML $MoTe_2$ and WS_2 1T'-2H in-plane heterojunctions. The MIGS at the interface are circled by the dark blue right triangle.

 $\boldsymbol{\Phi}_{\mathbf{W}}^{\mathbf{e}}\left(\mathrm{eV}\right)$

Figure S3. Comparison of the SBHs (Φ_W^e/Φ_W^h) of the work function approximation between this work and Wei's work.¹

Figure S4. Comparison of the band structure and the transport SBH of the ML MoTe₂ 1T'-2H in-plane heterojunction without and with spin orbit coupling (SOC).

Reference

(1) Liu, Y. Y.; Stradins, P.; Wei, S. H. Van Der Waals Metal-Semiconductor Junction: Weak Fermi Level Pinning Enables Effective Tuning of Schottky Barrier. *Sci. Adv.* **2016**, *2* (4), e1600069.