Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Electronic supplementary information to

Red-emission over a wide range of wavelength at various temperatures from tetragonal BaCN₂:Eu²⁺

Yuji Masubuchi^a*, Sayaka Nishitani^b, Akira Hosono^b, Yuuki Kitagawa^c, Jumpei Ueda^c, Setsuhisa Tanabe^c, Hisanori Yamane^d, Mikio Higuchi^a, Shinichi Kikkawa^a

^aFaculty of Engineering, Hokkaido University, N13 W8, Kita-ku, Sapporo 060-8628, Japan

^bGraduate School of Chemical Science and Engineering, Hokkaido University, N13 W8, Kita-ku, Sapporo 060-8628, Japan

^cGraduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan

^dInstitute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aobaku, Sendai, 980-8577, Japan

CONTENTS,

Figure S1 The powder XRD pattern of the nitrided product (red line) and the pattern calculated using the structural parameters reported by W. Schnick^{S1} (black line).

Figure S2 The Lattice parameters the tetragonal BaCN₂:Eu²⁺ depending on the Eu contents.

Figure S3 Temperature dependence of powder XRD pattern for BaCN₂:Eu.

Figure S4 Luminescence decay curves for BaCN₂:Eu measured at each temperature.

Figure S5 Radiative rate constant (k_r) and nonradiative rate constant (k_{nr}) at different temperatures.

Table S1 Crystal data and refinement result for $BaCN_2$ at 90 K.

Table S2 Atomic coordinates for $BaCN_2$ at 90 K.

*Corresponding author: Faculty of Engineering, Hokkaido University, N13 W8, Kita-ku, Sapporo 060-8628, Japan

E-mail: yuji-mas@eng.hokudai.ac.jp

Reference:

S1) U. Berger, and W. Schnick, Synthesis, crystal structures, and vibrational spectroscopic properties of MgCN₂, SrCN₂, and BaCN₂. *J. Alloys Compd.*, 1994, **206**, 179-184.

Figure S1 The powder XRD pattern of the nitrided product (red line) and the pattern calculated using the structural parameters reported by W. Schnick^{S1} (black line).

Figure S2 The Lattice parameters the tetragonal $BaCN_2$: Eu²⁺ depending on the Eu contents.

Reference:

S1) U. Berger, and W. Schnick, Synthesis, crystal structures, and vibrational spectroscopic properties of MgCN₂, SrCN₂, and BaCN₂. *J. Alloys Compd.*, 1994, **206**, 179-184.

Figure S3 Temperature dependence of powder XRD patterns for BaCN₂:Eu. Black triangles indicate diffraction lines attributed to an impurity phase.

Figure S4 Luminescence decay curves monitoring 650 nm emission of BaCN₂:Eu at different temperatures. All decay curves were fitted using a single exponential function as mentioned in Experimental Section.

Figure S5 Radiative rate constant (k_r) and nonradiative rate constant (k_{nr}) at different temperatures calculated using both the lifetime (T) and the estimated quantum efficiency (QE). The QE values at different temperatures were estimated from the integrated emission intensity ratio shown in Fig. 5b and the QE value at room temperature (42%).

The QE and τ are expressed as

$$QE = \frac{k_r}{k_r + k_{nr}} \tag{S1}$$

and

$$\tau = \frac{1}{k_r + k_{nr}} \tag{S2}$$

From equations S1 and S2, we calculated k_r and k_{nr} values at each temperature.

Chemical formula	BaCN ₂		
Formula weight, M_r (g mol ⁻¹)	177.37		
Crystal form, color	Plate, Translucent colorless		
Crystal size, mm ³	0.075×0.062×0.014		
Radiation wavelength, λ (nm)	0.071073		
Temperature, T (K)	90		
Crystal system	Tetragonal		
Space group	<i>I4/mcm</i> (No. 140)		
Unit-cell dimensions, <i>a</i> (nm)	0.60028(2)		
<i>c</i> (nm)	0.71519(3)		
Unit-cell volume, V (nm³)	0.25771(2)		
Z	4		
Calculated density, D_{cal} (Mg m ⁻³)	4.572		
Absorption coefficient, μ (mm-1)	15.057		
Absorption correction	MULTI-SCAN (TWINABS) ⁵²		
Limiting Indices	$-5 \le h \le 5$		
	$-7 \leq k \leq 7$		
	$-9 \le l \le 9$		
Number of reflections	228		
Weight parameters, a, b	0.0066, 7.6297		
Goodness-of-fit on F ² , S	1.195		
$R1, \omega R2(I > 2\sigma(I))$	0.0257, 0.0493		
R1,ωR2(all data)	0.0332, 0.0517		

Table S1 Crystal data and refinement result for $BaCN_2$ at 90 K

 $R1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|. \ \omega R2 = [\Sigma \omega (F_0^2 - F_c^2)^2 / \Sigma (\omega F_0^2)^2]^{1/2}, \ \omega = 1 / [\sigma^2 (F_0^2) + (aP)^2 + bP], \ \text{where } F_0 \text{ is the observed structure factor, } F_c \text{ is the calculated structure factor, } \sigma \text{ is the standard derivation of } F_c^2, \ \text{and } P = (F_0^2 + 2F_c^2) / 3. \ S = [\Sigma \omega (F_0^2 - F_c^2)^2 / (n-p)]^{1/2}, \ \text{where } n \text{ is the number of reflections and } p \text{ is the total number of parameters refined.}$

Reference:

S2) TWINABS (version 2012/1). Bruker AXS Inc., Madison, Wisconsin (USA) 2012.

Atom	Site	Occ.	X	у	Z	U _{iso}
Ва	4 <i>a</i>	1	0	0	0.25	0.0060(3)
С	4 <i>d</i>	1	0.5	0	0	0.006(3)
N	8h	1	0.3548(14)	0.1452(14)	0	0.006(2)

Table 2 Atomic coordinates for $BaCN_2$ at 90 K.

 U_{iso} / ×10⁻² nm² (= Å²)