Supporting information

A Simple and Broadly Applicable Synthesis of Fluorene-Coupled D-σ-A Type

Molecules: Towards High-Triplet-Energy Bipolar Hosts for Efficient Blue

Thermally-Activated Delayed Fluorescence

Chuan Li,‡^{ab} Xiaoyang Du,‡^c Yu Zhou,^a Jun Ye,*^{ab} Lulu Fu,^a Mark G. Humphrey,^b Chao Wu,^b Juewen Zhao,^c Yanqing Du,^a Silu Tao,*^c Jiacheng Wu,^a and Chi Zhang*^{ab}

- ^a China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
- ^b China-Australia Joint Laboratory for Functional Molecules and Ordered Matter, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China.
- ^c School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P. R. China.
- ‡C. L. and X.-Y.D. contributed equally to this work.

Corresponding Authors

E-mail: junye@tongji.edu.cn (J.Y.); silutao@uestc.edu.cn (S.-L.T.); chizhang@tongji.edu.cn (C.Z)

Scheme S1. Syntheses of 3CzFTFP, 9PhFTFP, 3CzFDPhTz, 9PhFDPhTz, and TPAFBSO. i) a) toluene, p-toluenesulfonyl hydrazide, 80 °C, 2 h; b) K₂CO₃, ArdB(OH)₂, 110 °C, 5 h; ii) anhydrous THF, -78 °C, *n*-BuLi, 2 h, pentafluoropyridine (or 2-chloro-4,6-diphenyl-1,3,5-triazine, or benzenesulfonyl chloride), room temperature, 3 h.

Figure S1. Spatial arrangement of molecules in the single crystals of **3CzFTFP**, **9PhFTFP**, **3CzFDPhTz** and **9PhFDPhTz** (The left one was marked with space distances between aromatic planes from two neighboring molecules).

Figure S2. (a) TGA, (b) first-cycle, and (c) second-cycle DSC curves of 3CzFTFP, 9PhFTFP, 3CzFDPhTz, and 9PhFDPhTz.

Figure S3. The fluorescence spectra of 3CzFTFP (a), 9PhFTFP (b), 3CzFDPhTz (c) and 9PhFDPhTz (d) in different solvents.

Figure S4. The photoluminescence (PL) spectrum (a) and transient PL decay curve (b) of 5 wt% **2CzPN**-doped **3CzFTFP** thin film (20 nm thick) at room temperature.

Figure S5. Cyclic voltammograms of **3CzFTFP**, **9PhFTFP**, **3CzFDPhTz** and **9PhFDPhTz** measured in CH_2CI_2 (anodic scan) and DMF (cathodic scan) at room temperature with tetra-*n*-butylammonium hexafluorophosphate (0.1 M) as supporting electrolyte and a scan rate of 100 mV s⁻¹.

Figure S6. EL spectra of the 2CzPN-based blue TADF devices using 3CzFTFP, 9PhFTFP, 3CzFDPhTz and 9PhFDPhTz as the hosts.

Figure S7. FMO energy level alignment of device C based on 3CzFDPhTz.

Figure S8. Molecular chemical structures (left), single-crystal ball-and-stick models (middle), and wires/sticks models with marked dihedral angle values (right) of TPAFBSO.

Host	V _{on} ^a	CE ^{a,b}	PE ^{a,b}	EQE ^{a,b}	CIE	Ref.
	(V)	(cd A ⁻¹)	(Im W⁻¹)	(%)	(x, y)	
3CzFTFP	4.0	38.3, 11.8, -	30.1, 6.5, -	16.9, 4.7, -	(0.21, 0.34)	This work
9PhFTFP	3.6	32.4, 18.7, -	28.3, 11.2, -	13.4, 7.4, -	(0.21, 0.34)	This work
3CzFDPhTz	3.0	33.0, 18.7, 5.6	32.4, 13.7, 4.0	16.4, 7.6, 3.0	(0.19, 0.30)	This work
9PhFDPhTz	3.2	23.3, 18.7, 6.9	20.9, 13.7, 4.1	9.7, 7.7, 3.1	(0.19, 0.31)	This work
<i>m</i> -DCz-S	3.3	26.1, 15.6, 6.5	24.1, 9.9, 3.0	11.4, 6.5, 2.9	(0.17, 0.30)	Ref. 1
o-CzCN	5.1	29.23, -, -	18.36, -, -	14.52, -, -	(0.17, 0.23)	Ref. 2
<i>m</i> -CzCN	4.8	26.37, -, -	16.56, -, -	14.98, -, -	(0.17, 0.26)	Ref. 2
<i>p</i> -CzCN	3.8	14.41, -, -	11.12, -, -	8.10, -, -	(0.17, 0.28)	Ref. 2
mCP/PO15	3.0	45.3, -, 5.5	47.4, -, 3.0	21.8, -, 2.8	-	Ref. 3
CzDPPy	3.4	34.8, 18.9, 1.9	33.1, 10.4, 0.5	16.0, 7.23, 0.9	(0.18, 0.34)	Ref. 4
tCzDPPy	3.9	28.9, 8.7, -	23.3, 4.2, -	11.7, 4.2, -	(0.22, 0.38)	Ref. 4
mCP	6.2	23.87, 15.8, 8.53	-	14.0, 6.5, 4.0	(0.17, 0.32)	Ref. 5
ZDZ	5.0	31.83, 23.2, 10.72	-	18.5, 10.7, 4.9	(0.17, 0.34)	Ref. 5
ZDN	4.7	53.05, 30.8, 14.29	-	25.7, 15.3, 6.0	(0.19, 0.39)	Ref. 5
NDN	4.8	47.74, 26.7, 11.82	-	23.9, 10.7, 4.7	(0.20, 0.42)	Ref. 5
BT-01	3.0	53.0, 40.2, 20.2	47.5, 26.6, 9.0	25.5, 19.5, 10.0	(0.16, 0.31)	Ref. 6
BT-02	3.4	47.5, 30.3, 13.3	42.6, 19.2, 5.9	22.3, 13.9, 6.2	(0.17, 0.31)	Ref. 6
<i>o</i> -mCPBI	3.6	21.4, -, -	17.7, -, -	10.2, 6.5, 5.6	(0.16, 0.30)	Ref. 7
BmPOPB	3.17	35.1, 22.9, 6.6	32.42, 17.44, 3.0	17.4, 11.6, 3.6	(0.16, 0.28)	Ref. 8
ВрРОРВ	3.20	30.3, 20.3, 5.9	28.0, 14.95, 2.6	15.2,10.19,3.23	(0.16, 0.27)	Ref. 8
ТРВі	3.34	21.1, 16.5, 6.8	18.4, 10.81, 2.8	8.6, 7.3, 3.2	(0.20, 0.30)	Ref. 8
РРТ/ТРВі	-	-	-	13.6, -, -	(0.17, 0.30)	Ref. 9
TmPyPB	4.1	30.1, -, 10.4	27.1, -, 4.1	19.0, -, 6.1	(0.18, 0.36)	Ref. 10
o-CzDPz	4.5	26.2, 14.9, 5.4	16.5, 7.0, 2.6	14.5, 8.2, 3.0	(0.16, 0.28)	Ref. 11

Table S1. Summary of the EL performance of devices using **3CzFTFP**, **9PhFTFP**, **3CzFDPhTz**, **9PhFDPhTz**, and other high- E_T compounds reported in the literature as the host, and 2CzPN as the emitter.

<i>m</i> -CzDPz	4.7	19.1, 11.7, 5.6	12.0, 5.6, 2.1	10.5, 6.4, 3.1	(0.16, 0.30)	Ref. 11
3-CzDpz	3.8	26.2, 15.0, 6.8	20.6, 8.6, 2.9	15.8, 9.0, 4.1	(0.16, 0.29)	Ref. 11
mCPDPz	4.8	23.3, 13.3, 7.4	14.6, 6.5, 2.6	10.9, 6.2, 3.5	(0.17, 0.34)	Ref. 11

^a Von: turn-on voltage, CE: current efficiency, PE: power efficiency, and EQE: external quantum efficiency. ^b In the order of maximum, then values at 100 and 1000 cd m⁻².

CCDC 1816870 (**3CzFTFP**), 1816871 (**9PhFTFP**), 1816873 (**3CzFDPhTz**), 1816874 (**9PhFDPhTz**) and 1830678 (**TPAFBSO**) contain the supplementary crystallographic data for this paper. These data can be obtained, free of charge, from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Empirical formula	C ₃₆ H ₂₀ F ₄ N ₂
Formula weight	556.54
Temperature (K)	120(2) K
Crystal system	Monoclinic
Space group	P2 ₁ /c
<i>a</i> (Å)	19.0256(7)
<i>b</i> (Å)	6.8065(3)
<i>c</i> (Å)	20.2686(9)
α (°)	90
в (°)	102.703(2)
γ (°)	90
Volume (ų)	2560.49(19)
Z	4
Density (calculated) (g⋅cm ⁻³)	1.444
Absorption coefficient (mm ⁻¹)	0.105
F(000)	1144
Theta range for data collection (°)	3.17 – 27.51
Limiting indices	-24 ≤ h ≤ 24, -8 ≤ k ≤ 8, -25 ≤ l ≤ 26
<i>R</i> _{int}	0.0455
Reflections collected / unique	9160 / 5842
Goodness-of-fit on F ²	1.076
Final R indices $[F_0^2 > 2\sigma (F_0^2)]^a$	0.0646/0.1499
<i>R</i> indices (all data) ^{<i>a</i>}	0.1047/0.1699
Largest diff. peak and hole (e Å ⁻³)	0.329 and -0.369

Table S2. Crystal data and structure refinement details for 3CzFTFP.

Empirical formula	C ₃₆ H ₂₀ F ₄ N ₂
Formula weight	556.54
Temperature (K)	120(2) K
Crystal system	Orthorhombic
Space group	Pbca
<i>a</i> (Å)	8.1153(5)
b (Å)	17.5146(11)
<i>c</i> (Å)	36.762(2)
α (°)	90
в (°)	90
γ (°)	90
Volume (ų)	5225.2(5)
Z	8
Density (calculated) (g·cm⁻³)	1.415
Absorption coefficient (mm ⁻¹)	0.103
F(000)	2288
Theta range for data collection (°)	2.98 – 27.10
Limiting indices	-10 ≤ h ≤ 10, -21 ≤ k ≤ 22, -46 ≤ l ≤ 47
R _{int}	0.0674
Reflections collected / unique	29721 / 5760
Goodness-of-fit on F ²	1.286

 Table S3. Crystal data and structure refinement details for 9PhFTFP.

Final R indices $[F_o^2 > 2\sigma (F_o^2)]^a$	0.0842/0.1618	
<i>R</i> indices (all data) ^{<i>a</i>}	0.1134/0.1707	
Largest diff. peak and hole (e Å-3)	0.292 and -0.376	
^a $R_1 = \sum F_o - F_c / \sum F_o ; wR_2 = [\sum w(F_o^2 - F_c^2)^2] / \sum w(F_o^2)^2]^{1/2}$		

Table S4. Crystal data and structure refinement details for 3CzFDPhTz.

Empirical formula	$C_{46} H_{30} N_4$
Formula weight	638.47
Temperature (K)	120(2) K
Crystal system	Monoclinic
Space group	C2/c
<i>a</i> (Å)	22.949(2)
<i>b</i> (Å)	9.1637(9)
<i>c</i> (Å)	31.752(3)
α (°)	90
<i>β</i> (°)	96.447(3)
γ (°)	90
Volume (ų)	6635.1(11)
Z	8
Density (calculated) (g·cm ⁻³)	1.279
Absorption coefficient (mm ⁻¹)	0.075
F(000)	2672
Theta range for data collection (°)	2.97 – 27.17
Limiting indices	-29 ≤ h ≤ 28, -11 ≤ k ≤ 11, -36 ≤ l ≤ 40

R _{int}	0.0792
Reflections collected / unique	35141 / 7196
Goodness-of-fit on <i>F</i> ²	1.206
Final R indices $[F_0^2 > 2\sigma (F_0^2)]^a$	0.0955/0.1759
<i>R</i> indices (all data) ^{<i>a</i>}	0.1392/0.1940
Largest diff. peak and hole (e Å ⁻³)	0.342 and -0.389
$R_1 = \sum F_o - F_c / \sum F_o ; wR_2 = [\sum w(F_o^2 - F_o)]$	$F_c^2)^2]/\sum w(F_o^2)^2]^{1/2}$

Table S5. Crystal data and structure refinement details for 9PhFDPhTz.

Empirical formula	$C_{46} H_{30} N_4$
Formula weight	638.74
Temperature (K)	120(2) K
Crystal system	Triclinic
Space group	P-1
<i>a</i> (Å)	10.0321(13)
b (Å)	11.8164(17)
<i>c</i> (Å)	15.471(2)
α (°)	90.653(7)
в (°)	93.450(7)
γ (°)	113.629(7)
Volume (ų)	1675.9 (4)
Z	2
Density (calculated) (g·cm ⁻³)	1.266
Absorption coefficient (mm ⁻¹)	0.075

F(000)	668
Theta range for data collection (°)	3.18 - 26.45
Limiting indices	$-12 \le h \le 12, -14 \le k \le 14, -19 \le l \le 19$
R _{int}	0.0297
Reflections collected / unique	11156 / 6851
Goodness-of-fit on F ²	1.020
Final R indices $[F_0^2 > 2\sigma (F_0^2)]^a$	0.0461/0.1005
<i>R</i> indices (all data) ^{<i>a</i>}	0.0749/0.1127
Largest diff. peak and hole (e Å ⁻³)	0.242 and -0.226
^a $R_1 = \sum F_o - F_c / \sum F_o ; wR_2 = [\sum w(F_o^2 - $	$F_c^2)^2]/\sum w(F_o^2)^2]^{1/2}$

Table S6. Crystal data and structure refinement details for TPAFBSO.

Empirical formula	C ₃₇ H ₂₇ NO ₂ S	
Formula weight	549.66	
Temperature (K)	293(2) К	
Crystal system	Triclinic	
Space group	<i>P</i> -1	
a (Å)	8.8671(3)	
<i>b</i> (Å)	34.1025(12)	
<i>c</i> (Å)	12.0757(3)	
α (°)	90	
в (°)	128.710(2)	
γ (°)	90	
Volume (ų)	2849.40 (16)	

Z	4	
Density (calculated) (g·cm⁻³)	1.281	
Absorption coefficient (mm ⁻¹)	0.149	
F(000)	1152	
Theta range for data collection (°)	2.93 – 27.14	
Limiting indices	$-10 \le h \le 11, -43 \le k \le 43, -15 \le l \le 14$	
R _{int}	0.0241	
Reflections collected / unique	33264 / 6259	
Goodness-of-fit on F ²	1.110	
Final R indices $[F_0^2 > 2\sigma (F_0^2)]^a$	0.0395/0.0964	
<i>R</i> indices (all data) ^{<i>a</i>}	0.0436/0.0986	
Largest diff. peak and hole (e Å ⁻³)	0.333 and -0.438	
^a $R_1 = \sum F_o - F_c / \sum F_o ; wR_2 = [\sum w(F_o^2 - F_c^2)^2] / \sum w(F_o^2)^2]^{1/2}$		

REFERENCES

- 1 K. Gao, K. K. Liu, X. L. Li, X. Y. Cai, D. J. Chen, Z. D. Xu, Z. Z. He, B. B. Li, Z. Y. Qiao, D. C. Chen, Y. Cao and S. J. Su, *J. Mater. Chem. C*, 2017, **5**, 10406.
- 2 W. Li, J. Y. Li, D. Liu, F. Wang and S. F. Zhang, J. Mater. Chem. C, 2015, 3, 12529.
- 3 J. W. Sun, K. H. Kim, C. K. Moon, J. H. Lee and J. J. Kim, ACS Appl. Mater. Interfaces, 2016, 8, 9806.
- 4 J. F. Pei, X. Y. Du, C. Li, C. Wang, C. Fan, H. C. Tan, B. Cao, F. Y. Huang, S. L. Tao and J. Z. Li, *Org. Electron.*, 2017, **50**, 153.
- J. S. Kang, T. R. Hong, H. J. Kim, Y. H. Son, R. Lampande, B. Y. Kang, C. Lee, J. K. Bin, B. S. Lee, J. H. Yang, J. Kim, S. Park, M. J. Cho, J. H. Kwon and D. H. Choi, *J. Mater. Chem. C*, 2016, 4, 4512.

- 6 C. C. Lin, M. J. Huang, M. J. Chiu, M. P. Huang, C. C. Chang, C. Y. Liao, K. M. Chiang, Y. J. Shiau, T. Y. Chou, L.
 K. Chu, H. W. Lin and C. H. Cheng, *Chem. Mater.*, 2017, **29**, 1527.
- 7 Y. L. Zhao, C. Wu, P. L. Qiu, X. P. Li, Q. Wang, J. S. Chen and D. G. Ma, *ACS Appl. Mater. Interfaces*, 2016, 8, 2635.
- 8 Q. Zhang, B. Wang, J. H. Tan, G. Y. Mu, W. Yi, X. L. Lv, S. Q. Zhuang, W. Liu and L. Wang, J. Mater. Chem. C, 2017, 5, 8516.
- 9 K. Masui, H. Nakanotani and C. Adachi, Org. Electron., 2013, 14, 2721.
- 10 G. H. Kim, R. Lampande, J. B. Im, J. M. Lee, J. Y. Lee and J. H. Kwon, *Mater. Horiz.*, 2017, 4, 619.
- 11 W. Li, J. Y. Li, F. Wang, Z. Gao and S. F. Zhang, ACS Appl. Mater. Interfaces, 2015, 7, 26206.