Supporting Information

Highly flexible and stretchable MWCNT/HEPCP nanocomposites

integrated near-IR, temperature and stress sensitivity for electronic

skin

Mei Li, Yunming Wang*, Yun Zhang, Huamin Zhou, Zhigao Huang, Dequn Li

Characterization of MWCNT/HEPCP nanocomposite films

Fourier transform infrared spectroscope (FTIR):

Fig. S1 The FTIR spectroscope of initial MWCNTs, functionalized MWCNTs, HEPCP, 4 wt% MWCNT/HEPCP nanocomposite.

Functionalized MWCNTs (Fig. S1b): There is no infrared absorption peak between 1700 cm⁻¹ and 3000 cm⁻¹.

HEPCP: 2860 (v CH₂) cm⁻¹, 1732 (v C=O) cm⁻¹, 1533 and 1452 (v C=C aromatic) cm⁻¹, 1366 (v_{as} CH₂) cm⁻¹, 1218 (v_{as} C-N aromatic) cm⁻¹, 1100 (v_s CH₂) cm⁻¹, 956 (v_{as} C-O-C) cm⁻¹.

MWCNT/HEPCP nanocomposites: 2860 (v CH₂) cm⁻¹, 1732 (v C=O) cm⁻¹, 1530 and 1448 (v C=C aromatic) cm⁻¹, 1366 (v_{as} CH₂) cm⁻¹, 1213 (v_{as} C-N aromatic) cm⁻¹, 1093 (v_s CH₂) cm⁻¹, 952 (v_{as} C-O-C) cm⁻¹.

UV-Vis-NIR spectroscope:

Fig. S2 The UV-vis-NIR spectroscope of 4 wt% MWCNT/HEPCP nanocomposite film (Thickness, 0.4 mm).

Sensitivity to IR illumination, temperature, and tensile strain

Fig. S3 The schematic diagram of the IR response test experiments (sample size: 1.0 mm \times 0.5 mm \times 0.4 mm).

Fig. S4 The IR-regulated on/off electrical conductivity ratio of the MWNT/HEPCP nanocomposite films at different IR power density (IR power density: 18, 23, 32, 35, 42 and 47 mW mm⁻²): (a) 3 wt% MWCNT/HEPCP nanocomposite; (b) 5 wt% MWCNT/HEPCP nanocomposite; (c) 7 wt% MWCNT/HEPCP nanocomposite; (d) 8 wt% MWCNT/HEPCP nanocomposite.

Fig. S5 Initial electrical conductivity of MWCNT/HEPCP nanocomposite films (3 wt%–10 wt%; sample size: 1.0 mm \times 0.5 mm \times 0.4 mm) measured at room temperature before IR, temperature and tensile strain response test.

Fig. S6 The response time of IR and temperature profiles for (a) the 3 wt% and (b) 5 wt% MWCNT/HEPCP nanocomposites at an IR power density of 35 mW mm⁻².

Fig. S7 The sample size and experimental schematic of the temperature response test (sample size: 1.0 mm \times 0.5 mm \times 0.4 mm).

Fig. S8 (a) The temperature dependence electrical conductivity ratio (σ/σ_0) and temperature profile correspond to the heating process from room temperature to 70 °C in 20 s, then cooling to the room temperature at room temperature. (b) The response time (the time taken for the conductivity rise to 63.2% of the total magnitude of conductivity change during heating.) of temperature dependence electrical conductivity ratio (σ/σ_0) of 4 wt% MWCNT/HEPCP during the heating process from room temperature to 70 °C in 20 s.

Fig. S9 The sample size and experiment device diagram of the tensile stress response test (sample size: 10 mm \times 3 mm \times 0.4 mm).

Fig. S10 (a) Gauge factor of the 6, 7 and 10 wt% MWCNT/HEPCP nanocomposite films as a function of tensile strain; (b) Electrical conductivity of 6, 7 and 10 wt% MWCNT/HEPCP nanocomposite films as a function of tensile strain.

Fig. S11 Poisson's ratio of width and thickness of (a) 6 wt%, (b) 7 wt% and (c) 10 wt% MWCNT/HEPCP nanocomposite films as a function of tensile strain; (d) The displacement of 6 wt% MWCNT/HEPCP nanocomposite film in the recurrent stretching cycles, strain $\varepsilon = 50\%$.

Fig. S12 Comparison of the macroscopic morphology of the pure PEG (6 kDa), pure PTHF (2.9 kDa), HEPCP and 4 wt% MWCNT/HEPCP nanocomposite at different temperatures.

Mechanism underlying the IR, temperature, and tensile stress response of the nanocomposites

Differential Scanning Calorimetry (DSC):

Fig. S13 The DSC curve of PEG (6 kDa), PTHF (2.9 kDa), HEPCP and MWCNT/HEPCP nanocomposites (heating and cooling rate: 5 °C min⁻¹): (a) The DSC curve of PEG (6 kDa), PTHF (2.9 kDa); (c) The DSC curve of HEPCP and 4 wt% MWCNT/HEPCP nanocomposite; (b) The DSC curve of 3 wt%, 4 wt%, 5 wt% and 8 wt% MWCNT/HEPCP nanocomposites.

Table S1 Phase transition behavior	of PEG (6 kDa), PTHF (2.9 kDa), HEPCP and MWCNT/HEPCP	[,] nanocomposites.
------------------------------------	-------------------------------	--------------------------	------------------------------

Sample	∆ <i>H</i> [J g ⁻¹]		<i>T_m</i> [°C]	<i>T</i> _c [°C]
	Heatin	Cooling	Heating	Cooling
PEG [6 kDa]	173.88	167.34	64.21	40.50
PTHF [2.9 kDa]	95.06	88.08	39.38	10.45
HEPCP	37.65	36.43	20.77	-7.42
3 wt%	30.50	31.81	22.75	2.75
4 wt%	37.69	33.73	22.75	3.42
5 wt%	31.53	34.28	22.25	1.77
7 wt%	45.09	36.56	24.33	5.24
8 wt%	32.98	31.75	22.75	3.58

(Where ΔH is the enthalpy of the phase transition; T_m is the melting peak temperature; T_c is the recrystallization peak temperature.)