ELECTRONIC SUPPLEMENTARY INFORMATION

Highly Photoluminescent, Dense Solid Films from Organic-capped CH₃NH₃PbBr₃

Perovskite Colloids

Soranyel Gonzalez-Carrero, Laura Martinez-Sarti, Michele Sessolo, Raquel. E. Galian, Julia Pérez-Prieto*

Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain.

Corresponding author email: julia.perez@uv.es

Table of Content			
Table S1. Photoluminescence data of P _{1ADA-carboxylic} series as colloids			
Figure S1. Absorption spectra; PL emission spectra and PL kinetic decay traces of $CH_3NH_3PbBr_3$ nanoparticles capped with 1-ADA and carboxylic acid			
Table S2. Photoluminescence data of the P _{2ADA-carboxylic} series as colloids	S 3		
Figure S2. Absorption spectra; PL emission spectra and PL kinetic decay traces of $CH_3NH_3PbBr_3$ nanoparticles capped with 2-ADA and carboxylic acid.			
Figure S3. Scanning electron Microscopy (SEM) images of ITO coated Glass and P _{2ADA-propanoate} nanoparticles deposited on ITO coated Glass.			
Figure S4. XPS spectra corresponding to Pb 4f; Br 3d; N 1s; O 1s and C 1s of $P_{2ADA-propanoic}$ nanoparticles.	S5		
Figure S5. Schematic representation of the centrifugal casting method used for film preparation.	S6		
Figure S6. X-ray diffraction of P _{2ADA-propanoic} NP solid film.	S6		

Table S1. Photoluminescence data of $P_{1ADA-carboxylic}$ series as colloids. Average lifetime, calculate as $\tau_{av} = \Sigma A_i \tau_i^2 / \Sigma A_i \tau_i$; where τ_i are the decay times and α_i represents the amplitudes of the components, values obtained from the fitted PL kinetic decay traces.

	Amine	Carboxylic Acid	λ _{max} a (nm)	$arPhi_{PL}{}^{b}$	τ _{av} c,d (ns)
1	1-ADA	Oleic acid	521	87	30
2	1-ADA	Decanoic acid	523	81	47
3	1-ADA	Octanoic acid	523	85	116
4	1-ADA	Hexanoic acid	525	82	93
5	1-ADA	Isobutanoic acid	526	78	181
6	1-ADA	Propanoic acid	526	66	125
7	1-ADA	1-Adamantanecarboxylic acid	522	72	78

^a PL maximum wavelength; ^cPL quantum yield; ^c average lifetime, the PL decays, registered at the PL peak maximum, were fitted with a triexponential function of time.

Figure S1. a) Absorption spectra; b) PL emission spectra and c) PL kinetic decay traces of CH₃NH₃PbBr₃ nanoparticles capped with 1-ADA and carboxylic acid. See details in table S1.

	Amine	Carboxylic Acid	λ _{max} a (nm)	FWHM ^ь (nm)	${\it I}\!\!{D}_{\rm PL}$ c	τ _{av} ^{d,e} (ns)
8	2-ADA	Oleic acid	518	26	94	32
9	2-ADA	Decanoic acid	521	26	94	76
10	2-ADA	Octanoic acid	517	26	98	34
11	2-ADA	Hexanoic acid	519	27	96	40
12	2-ADA	Isobutanoic acid	519	27	95	50
13	2-ADA	Propanoic acid	516	27	98	33
14	2-ADA	1- Adamantanecarboxylic acid	516	26	97	41

Table S2. Photoluminescence data of the P_{2ADA-carboxylic} series as colloids

^a PL peak maximum; ^bfull width at half maximum; ^cPL emission quantum yield; ^daverage lifetime. The PL decays, registered at the PL peak maximum, were fitted with a triexponential function of time.^e

Figure S2. a) Absorption spectra; b) PL emission spectra and c) PL kinetic decay traces of CH₃NH₃PbBr₃ nanoparticles capped with 2-ADA and carboxylic acid. See details in table S2.

Figure S3. Scanning electron Microscopy (SEM) images of: a) ITO coated Glass and b) P_{2ADA-propanoic} nanoparticles deposited on ITO coated Glass.

Figure S4. XPS spectra corresponding to: a) Pb 4f; b) Br 3d; c) N 1s; d) O 1s and e) C 1s of $P_{2ADA-propanoic}$ nanoparticles.

Figure S5. Schematic representation of the centrifugal casting method used for film preparation.

Figure S6. X-ray diffraction of $P_{2ADA-propanoic}$ NP solid film