Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Reverse Synthesis of $CsPb_xMn_{1-x}(Cl/Br)_3$ Perovskite Quantum Dots from $CsMnCl_3$ Precursor through Cation Exchange

Gaoliang Fang¹, Daqin Chen^{1,2,*}, Su Zhou¹, Xiao Chen¹, Lei Lei^{3,*}, Jiasong Zhong¹, Zhenguo Ji¹

¹College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, P. R. China

²College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China

³College of Materials Science and Engineering, China Jiliang University, Hangzhou, Zhenjiang, 310018, P. R. China

*Corresponding authors

E-Mail: dqchen@hdu.edu.cn; leilei@cjlu.edu.cn

Element Sample	Cs	Pb	Mn	Cl
CsMnCl ₃	0.333		0.284	1.143
5 min	0.313	0.106	0.109	0.856
10 min	0.345	0.233	0.071	1.099
30 min	0.322	0.256	0.018	0.979
60 min	0.339	0.277	0.004	0.993

Table S1 Tabulation of Cs, Pb, Mn and Cl mole contents from EDX data for $CsMnCl_3$ precursor NCsand the prepared PQDs with Mn-to-Pb feeding ratio of 1:4 for different reaction times.

Element Sample	Mn (mmol/L)	Pb (mmol/L)	Mn: Pb
CsMnCl ₃	0.556		
5 min	0.413	0.159	0.72:0.28
10 min	0.251	0.313	0.45:0.55
30 min	0.021	0.527	0.04:0.96
60 min	0.007	0.559	0.01:0.99

Table S2 Tabulation of Mn: Pb mole ratio from ICP data for $CsMnCl_3$ precursor NCs and the prepared PQDs with Mn-to-Pb feeding ratio of 1:4 for different reaction times.

Figure S1 XRD pattern of CsMnCl $_3$ precursor nanocrystals via a hot injection method.

Figure S2 TEM image of $CsMnCl_3$ precursor nanocrystals via a hot injection method.

Figure S3 EDX spectrum of $Cs_4Pb_xMn_{1-x}Cl_6$ sample with reaction time of 60 min, showing the existence of Cs, Pb, Cl and Mn elemental signals. Inset is the calculated elemental contents with Cs: (Pb+Mn): Cl ratio being close to 4:1:6.

Figure S4 Absorption spectra of the as-prepared products with different Mn-to-Pb feeding ratios for reaction time of 5, 10, 30, 60 min using $PbCl_2$ as the source for cation exchange: (a) 1:1, (b) 1:2 and (c) 1:4.

Figure S5 PL decay curves of Mn²⁺ luminescence (λ_{em} =600 nm, assigned to Mn²⁺: ${}^{4}T_{1}\rightarrow{}^{6}A_{1}$ transition) in the CsPb_xMn_{1-x}Cl₃ PQDs synthesized with Mn-to-Pb feeding ratio of 1:2. Evidently, with increase of reaction time, the lifetime of Mn²⁺: ${}^{4}T_{1}$ emitting state increases from 0.830 ms to 1.292 ms.

Figure S6 PL decay curves of Mn²⁺ luminescence (λ_{em} =600 nm, assigned to Mn²⁺: ${}^{4}T_{1}\rightarrow {}^{6}A_{1}$ transition) in the CsPb_xMn_{1-x}Cl₃ PQDs synthesized with Mn-to-Pb feeding ratio of 1:4. Evidently, with increase of reaction time, the lifetime of Mn²⁺: ${}^{4}T_{1}$ emitting state increases from 1.107 ms to 1.709 ms.

Figure S7 PL decay curves of exciton recombination for $CsPb_xMn_{1-x}Cl_3$ PQDs synthesized with Mnto-Pb feeding ratio of 1:4, showing gradual increase of lifetime for PQDs with increase of cation exchange time.

Figure S8 Excitation-emission mapping for the as-prepared $CsPb_xMn_{1-x}Cl_3$ PQDs with Mn-to-Pb feeding ratio of 1:4 and reaction time of 60 min, showing the excitation wavelength independent emissions for both $CsPbCl_3$ QDs and Mn^{2+} ions.

Figure S9 Absorption spectra of the as-prepared products with different Mn-to-Pb feeding ratios for reaction time of 5, 10, 30, 60 min using $PbBr_2$ as the source for cation exchange: (a) 1:1, (b) 1:4.

Figure S10 (a) EDX spectrum of $Cs_4Pb_xMn_{1-x}(Cl/Br)_6$ sample with Mn-to-Pb feeding ratio of 1:1, Clto-Br ratio of 3:2 and reaction time of 60 min, showing the existence of Cs, Pb, Cl, Br and Mn elemental signals. (b) TEM image of $Cs_4Pb_xMn_{1-x}(Cl/Br)_6$ sample, exhibiting spherical shape with homogeneous size distribution.

Figure S11 PL decay curves of Mn²⁺ luminescence (λ_{em} =600 nm, assigned to Mn²⁺: ${}^{4}T_{1}\rightarrow {}^{6}A_{1}$ transition) in the CsPb_xMn_{1-x}(Cl/Br)₃ PQDs synthesized with Mn-to-Pb feeding ratio of 1:4 using PbBr₂ as the source for cation exchange. Evidently, with increase of reaction time, the lifetime of Mn²⁺: ${}^{4}T_{1}$ emitting state decreases from 0.897 ms to 0.711 ms ascribing to gradual change of Mn²⁺ ligand-field from Cl⁻ octahedron to Br⁻ dominant one.