Supporting information

Inverse thermal quenching effect in lanthanide-doped upconversion

nanocrystals for anti-counterfeiting

Lei Lei¹, Daqin Chen,^{2,3*} Can Li¹, Feng Huang², Junjie Zhang¹, Shiqing Xu^{1*}

¹China College of Materials Science and Engineering, China Jiliang University, Hangzhou 30018, P. R. China.

²College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China.
³College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China.

Figure S1-S14

Figure S1 EDS spectra of 20Yb/2Er: Na₃ZrF₇ NCs, Cu signals come from copper grid; Inset is the corresponding ICP-AES measured result.

Figure S2 (a) and (b) are XRD pattern and SAED image of 20Yb/2Er: Na₃ZrF₇ NCs, respectively. Bars represent standard tetragonal Na₃ZrF₇ (JCPDS 12-0562) crystal data.

Figure S3 (c) Room-temperature UC emission spectra of 20Yb/2Er (2Ho or 1Tm): Na₃ZrF₇NCs.

Figure S4 Log-log plots of UC emission intensity versus pumping power for the 20Yb/Ln: Na_3ZrF_7 (Ln = 2Er, 2Ho, 1Tm) NCs.

Figure S5 Proposed mechanisms for the energy transfer from Yb³⁺ to Er³⁺, Ho³⁺ and Tm³⁺.

Figure S6 (a) and (b) are the XRD pattern and TEM image of 20Yb/2Er: NaGdF₄ NCs (NGF), respectively; (c) UC emission spectra of 20Yb/2Er: NaGdF₄ and 20Yb/2Er: Na₃ZrF₇ (NZF) NCs; (d) Histograms of the integral emission intensity of the green and red region for the NGF and NZF samples.

Figure S7 Temperature-dependent XRD patterns of 20Yb2Er: Na₃ZrF₇ NCs.

Figure S8 Temperature-dependent lifetimes of ${}^{4}F_{9/2}$ excited state of Er³⁺ in 20Yb2Er: Na₃ZrF₇ NCs under 980 nm excitation.

Figure S9 FTIR spectra of the OA-capped (a) and ligand-free (b) 20Yb/2Er: Na₃ZrF₇ NCs; (c) Dependence of the Integral UC emission intensity on temperature for the ligand-free 20Yb/2Er: Na₃ZrF₇ NCs under 976 laser excitation. Insert of (c) are the UC emission spectra of the OA-capped and ligand-free samples under same characterization conditions.

Figure S10 TEM images of 20Yb/2Er: Na₃ZrF₇ NCs prepared with different Na⁺ concentration (a: 1mmol and b: 1.5mmol), (c) Dependence of the Integral UC emission intensity on temperature for (a) and (b).

Figure S11 TEM image of 20Yb/2Er: Na₃ZrF₇@Na₃ZrF₇ NCs, (b) Dependence of the Integral UC emission intensity on temperature for 20Yb/2Er: Na₃ZrF₇@Na₃ZrF₇, 20Yb/2Ho: Na₃ZrF₇@Na₃ZrF₇ and 20Yb/1Tm: Na₃ZrF₇@Na₃ZrF₇ NCs.

Figure S12 Temperature-dependent photon UC emission spectra of 20Yb/2Er: Na₃ZrF₇ under different pumping power.

Figure S13 (a) Low-temperature dependent photon UC emission spectra of 20Yb/2Er: Na₃ZrF₇ NCs under 980 nm laser excitation. LFDP represents the laser frequency doubling peak. (b) Dependence of the Integral UC emission intensity on temperature (between 20 and 290 K) for 20Yb/2Er: Na₃ZrF₇ NCs.

Figure S14 (a) and (b) are the XRD patterns of 20Yb/2Er: NaGdF₄ and 49Yb/2Tm: NaYF₄ NCs, respectively, bars represent standard hexagonal NaGdF₄ (JCPDS 27-0699) and NaYF₄ (JCPDS 16-0334) crystal data. (c) and (d) are their corresponding TEM image of (a) and (b), respectively. (e) and (f) are their corresponding temperature dependent UC emission spectra.

References

- [S1] Segall, P. J. D. L. M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark and M. C. Payne, J. Ph ys. Condens. Matter, 2002, 14, 2717.
- [S2] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.
- [S3] D. R. Hamann, M. Schlüter and C. Chiang, Phys. Rev. Lett., 1979, 43, 1494.