Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Supplementary information

Photoacid generator-polymer interaction on the quantum yield of chemically amplified resists for extreme ultraviolet lithography

Roberto Fallica and Yasin Ekinci

Paul Scherrer Institute, 5232 Villigen PSI, Switzerland

Contents

Figure S1.	S1
Figure S2.	S2
Figure S3.	S3
Figure S4.	S4

Figure S1.

Schematic of the experimental setup for the measurement of transmittance of thin photoresist film spin coated on a SiN_x membrane. The beam is generated by the undulator source and focused to a spatial filter pinhole of 30 μ m diameter and expands about 12 meter resulting in a relatively homogenous beam over several millimeters with an average flux of about 30 mW/cm². A square open-frame mask (0.5 × 0.5 mm²) is located in front of the sample to crop out the beam tail. The transmittance intensity of the light passing through a thin film, spin-coated on a silicon nitride membrane is measured as a function of time during the exposure. A photodiode is located behind the sample and its photocurrent is collected at a high rate (50 Hz) using a Keithley 6430 amperometer (see Supporting information S1).

Figure S2.

Example of extraction of Dill parameters from a transmittance measurement, as a function of time, for thin photoresist films. The transmittance T_X is measured as the photocurrent (Y-axis, in ampere) flowing in a photodiode located behind the sample, while the sample itself is exposed to EUV light for time equal to the time-to-clear (X-axis, in s). The linear absorption coefficient α of the pristine sample is extracted from the T_X at the beginning of the exposure (t = 0). The unbleachable Dill parameter B is extracted from the T_X at the end of the exposure, i.e., when the sample is fully exposed (green dashed line). The bleachable Dill parameter A is given by the relative variation of transmittance from the beginning to the end of the exposure. The Dill parameter C is proportional to the slope of the variation of photocurrent at the beginning of the exposure (red dashed line).

Figure S3.

Dosage curves for the samples of chemically amplified resists: samples with photoacid generator (top) and without (bottom).

Figure S4.

Raw data of measured transmittance (photocurrent in the diode as a function of time) through the thin photoresist films investigated in this work.

