Lead-Free Halide Double Perovskite-Polymer Composites for Flexible X-Ray Imaging

Haoran Li,¹ Xin Shan,¹ Jennifer N. Neu,^{2,5} Thomas Geske,³ Melissa Davis,¹ Pengsu Mao,¹ Kai Xiao,⁴ Theo Siegrist,^{2,3,5} Zhibin Yu^{1,3*}

- Department of Industrial and Manufacturing Engineering, High-Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University, Tallahassee FL 32310, USA
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee FL 32310, USA
- 3. Materials Science and Engineering, Florida State University, Tallahassee FL 32306, USA
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge TN 37831, USA
- 5. National High Magnetic Field Laboratory, Tallahassee Florida 32310, USA

*Email: zyu@fsu.edu

Materials	Detection Sensitivity	References
(CH ₃ NH ₃)Pbl ₃ polycrystalline films	$2.5 \times 10^4 \ \mu C \ Gy_{air}^{-1} \ cm^{-2}$	Yakunin [16]
(CH ₃ NH ₃)Pbl ₃ polycrystalline films	$1.1 \times 10^4 \ \mu C \ Gy_{air}^{-1} \ cm^{-2}$	Kim [17]
$(CH_3NH_3)PbI_3$ polycrystalline wafers	$2.5 \times 10^3 \ \mu C \ Gy_{air}^{-1} \ cm^{-2}$	Shrestha [18]
(CH ₃ NH ₃)PbBr ₃ single crystals	$80~\mu C~Gy_{air}^{-1}~cm^{-2}$	Wei H. [19]
(CH ₃ NH ₃)PbBr ₃ /Silicon integrated single crystals	$2.1 \times 10^4 \ \mu C \ Gy_{air}^{-1} \ cm^{-2}$	Wei W. [20]
Cs ₂ AgBiBr ₆ single crystals	105 $\mu C \ Gy_{air}^{-1} \ cm^{-2}$	Pan [21]
Cs ₂ AgBiBr ₆ /PVA composite thin films	40 μ C Gy _{air} ⁻¹ cm ⁻²	This work

Table S1. Summary of reported X-ray sensitivities using halide perovskite as photoconductors

Figure S1. Optical photos of solution-casted $Cs_2AgBiBr_6$ -polymer composite films with a) PEO ($M_w \sim 600,000$), b) PEO ($M_w \sim 100,000$), c) PMMA ($M_w \sim 15,000$), and d) PMMA ($M_w \sim 350,000$).

Figure S2. Optical microscopic images of a) a pristine perovskite film, b) perovskite/PMMA, c) perovskite/PVDF, and d) perovskite/PVA composite films with a perovskite:polymer weight ratio of 2:1.

Figure S3. SEM images of a) a pristine perovskite film and a perovskite/PVA composite film with 5:1 weight ratio (perovskite:PVA), b) top view and c) cross-sectional view.

Figure S4. The current-time response of a pure PVA film (100 μ m) at 400 V to four X-ray on/off cycles. No obvious current increase/decrease was observed.

Figure S5. Microscopic optical images of one gold thin film (100nm) on a polyethylene terephthalate (PET) plastic sheet before (top) and after (bottom) one cycle of compressive/tensile bending test with a minimal bending radius of 2mm.

Tensile-stressed bending

Figure S6. Resistance evolution of the 100nm-gold thin film on PET during (top) tensile-stressed

bending and (bottom) compressive-stressed bending with a minimal bending radius of 2mm.

Figure S7. A histogram of X-ray induced photocurrents for total ten devices that were measured in

Figure 5c