Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Highly-stable, green-solvent-processable organic thin-film transistors: angular- *vs* linear-shaped carbazoledioxazine

derivatives

Yang Wang*, Hiroki Tatsumi, Rikuo Otsuka, Takehiko Mori and Tsuyoshi Michinobu*

Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan

*Corresponding address: Yang Wang Tel/Fax: +81-3-5734-2469, E-mail: wang.y.av@m.titech.ac.jp Tsuyoshi Michinobu Tel/Fax: +81-3-5734-3774, E-mail: michinobu.t.aa@m.titech.ac.jp

Content

- 1. Synthetic details of compounds 1-3
- 2. Synthetic protocols towards angular- and linear-type carbazoledioxazines (CZ)
- 3. TGA curves
- 4. DSC curves
- 5. Side-view molecular geometry optimized by DFT calculations
- 6. 1D in-plane profile of GIWAXS
- 7. Crystal domain sizes illustrated by AFM images
- 8. Images of Lin-CZ-T dissolved in different solvents
- 9. UV-vis absorption spectra of Lin-CZ-T in THF/HEX mixtures
- 10. NMR spectra
- 11. MALDI-TOF MS spectra

1. Synthetic details of compounds 1-3

All chemicals were purchased from Tokyo Chemical Industry (TCI), Kanto Chemical, and Sigma Aldrich and used as received unless otherwise stated.

Synthesis of 4-methoxy-2-nitro-1,1'-biphenyl (1)

This compound was synthesized using a modified method according to literature^{S1}. Under N₂ atmosphere, phenylboronic acid (3.30 g, 26.7 mmol) and 1-bromo-4-methoxy-2-nitrobenzene (5.00 g, 21.6 mmol) were dissolved in degassed toluene (30 mL). Degassed K₂CO₃ aqueous solution (2 M, 25 mL) was then injected by a syringe. Subsequently, Pd(PPh₃)₄ (0.15 g, 0.13 mmol) was quickly added under N₂ flow. After stirring overnight at 110 °C, the reaction was quenched with H₂O (100 mL) and the organic phase was extracted with ethyl acetate (150 mL). Evaporation of the solvent followed by column chromatography (SiO₂, hexane/CH₂Cl₂ = 5:2) afforded the title compound as a yellow solid (4.90 g, 95%).

¹H NMR (300 MHz, CDCl₃): δ = 7.61 (d, J = 9 Hz, 1H), 7.42-7.39 (m, 4H), 7.30 (t, 6 Hz, 1H), 7.17 (d, J = 6 Hz, 1H), 7.01 (d, J = 6 Hz, 1H), 3.90 ppm (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ = 159.1, 149.6, 137.3, 135.4, 132.8, 128.6, 128.0, 119.9, 118.6, 110.7, 109.0, 104.5, 56.0 ppm.

Synthesis of 2-methoxy-9H-carbazole (2)

This compound was synthesized using a modified method according to literature^{S2}. Under N₂ atmosphere, 4-methoxy-2-nitro-1,1'-biphenyl (4.00 g, 17.4 mmol) and PPh₃ (11.0 g, 41.9 mmol) were dissolved in 1,2-dichlorobenzene (32 mL). After refluxing overnight, the solvent was removed by reduced pressure. The residue was then purified by column chromatography (SiO₂, hexane/CH₂Cl₂= 5:2) afforded the desired compound as a white solid (2.40 g, 70%).

¹H NMR (300 MHz, CDCl₃): δ = 7.90–8.02 (m, 2H), 7.15–7.43 (m, 3H), 6.92 (d, J = 2.0 Hz, 1H), 6.88 (dd, J = 2.4, 8.5 Hz, 1H), 3.91 ppm (s, 3H).

Synthesis of 9-(2-decyltetradecyl)-2-methoxy-9H-carbazole (3)

This compound was synthesized using a modified method according to literature^{S3}. Under N₂ atmosphere, 2-methoxy-9*H*-carbazole (4.10 g, 20.8 mmol) was dissolved in dry DMF (45 mL). NaH (1.3 g, 3.3 mmol) was then added quickly under N₂ flow. After stirring for 30 min at room temperature, 2-decyltetradecylbromide (9.60 g, 22.9 mmol) was injected by a syringe. After stirring overnight at room temperature, the reaction mixture was quenched with MeOH (5 mL) and water (100 mL) was added. The organic phase was extracted with CH_2Cl_2 (150 mL). Evaporation of the solvent followed by column chromatography (SiO₂, hexane/CH₂Cl₂ = 3:1) afforded the desired compound as a white solid (10.6 g, 95%).

¹H NMR (300 MHz, CDCl₃): $\delta = 8.00-7.93$ (m, 2H), 7.40-7.31 (m, 2H), 7.20 (t, J = 6.0 Hz, 1H), 6.88-6.82 (m, 2H), 4.04 (s, 2H), 3.90 (s, 3H), 2.10 (br,1H), 1.50-1.26 (m, 40 H), 0.86 ppm (t, J = 6.0 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 159.58$, 142.61, 141.75, 124.82, 123.52, 121.41, 120.14, 119.29, 117.15, 109.33, 107.59, 94.01, 55.84, 48.22, 39.94, 36.33, 33.12, 29.95, 27.02, 23.60, 14.47; MALDI-TOF MS (M_w = 533.87): m/z = 533.77 [M⁺].

References

[S1] M. Yuan, L. Chen, J. Wang, S. Chen, K. Wang, Y. Xue, G. Yao, Z. Luo and Y. Zhang, Org. Lett., 2015, 17, 346-349.

[S2] A. W. Freeman, M. Urvoy and M. E. Criswell, J. Org. Chem., 2005, 70, 5014-5019.

[S3] R. Otsuka, Y. Wang, T. Mori and T. Michinobu, *RSC Adv.*, 2018, **8**, 9822-9832.

2. Synthetic protocols towards angular- and linear-type carbazoledioxazines (CZ)

Scheme S1 Different synthetic protocols towards angular-shaped (Ang-CZ) and linear-shaped (Lin-CZ) carbazoledioxazine derivatives.

Fig. S1 Thermogravimetric analysis (TGA) under a nitrogen atmosphere at the heating rate of 10 $^{\circ}$ C min⁻¹.

4. DSC curves

Fig. S2 Differential scanning calorimetry (DSC) curves of **Ang-CZ**, **Lin-CZ**, and **Lin-CZ-T** at the scanning rate of 10 °C min⁻¹.

5. Side-view molecular geometry optimized by DFT calculations

Fig. S3 Calculated side-view molecular geometry of (a) **Ang-CZ**; (b) **Lin-CZ**; (c) **Lin-CZ-T** (using DFT B3LYP/6-31G(d), long and branched alkyl chains are substituted by the methyl group).

6. 1D in-plane profile of GIWAXS

Fig. S4 The 1D in-plane profile of the GIWAXS of Lin-CZ.

7. Crystal domain sizes illustrated by AFM images

Fig. S5 The size of the crystal domains illustrated by atomic force microscopy (AFM) images (the films were prepared under the best conditions of TFT performances): (a) phase image and (b) the corresponding domain size of **Ang-CZ**; (c) phase image and (d) the corresponding domain size of **Lin-CZ**.

8. Images of Lin-CZ-T dissolved in different solvents

Fig. S6 Images of **Lin-CZ-T** dissolved in CHCl₃ (left), THF (middle) and hexane (right) at a concentration of 5 mg mL⁻¹.

9. UV-vis absorption spectra of Lin-CZ-T in THF/HEX mixtures

Fig. S7 UV-vis absorption spectral changes of the diluted solution of **Lin-CZ-T** in tetrahydrofuran (THF) by adding hexane (HEX).

Fig. S8 ¹H NMR of compound 3 in CDCl₃.

Fig. S9¹³C NMR of compound **3** in CDCl₃.

б (ррт)

Fig. S11 ¹³C NMR of compound 4 in CDCl₃.

Fig. S13 ¹³C NMR of compound 5 in CDCl₃.

Fig. S15¹³C NMR of Lin-CZ in CDCl₃.

Fig. S17¹³C NMR of Lin-CZ-T in CDCl₃.

11. MALDI-TOF MS spectra

Fig. S18 MALDI-TOF MS of **5** ($M_w = 1270.83$): found m/z = 1270.29 [M⁺], using dithranol ($M_w = 226.23$) as a matrix.

Fig. S19 MALDI-TOF MS of **Lin-CZ** ($M_w = 1206.83$): found m/z = 1206.54 [M⁺], using dithranol ($M_w = 226.23$) as a matrix.

Fig. S20 MALDI-TOF MS of **Lin-CZ-T** ($M_w = 1370.89$): found m/z = 1370.90 [M⁺], using dithranol ($M_w = 226.23$) as a matrix.