Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018 ## Absolute up-conversion quantum efficiency reaching 4% in β-NaYF₄:Yb³⁺,Er³⁺ micro-cylinders achieved by Li⁺/Na⁺ ion-exchange Shaohua Fan^{1, 2}, Guojun Gao^{1, 3, *}, Shiyu Sun¹, Sijun Fan¹, Hongtao Sun⁴, Lili Hu^{1, *} ¹Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China ²University of Chinese Academy of Sciences, Beijing 100049, China ³Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany ⁴College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China *Corresponding authors: G. Gao: guojun.gao@hotmail.com; L. Hu: hulili@siom.ac.cn **Fig. S1.** The variation of decay curves of green UC emission for Li⁺/Na⁺ IEM β-NaYF₄:20%Yb³⁺,2%Er³⁺ synthesized with LiF/NaF = 40/60 dependent on the pump power density (976 nm, $0.8 - 4.8 \text{ W/cm}^2$).