Supporting Information for

Hierarchically Porous Carbon with Controlled Structure for Efficient

Microwave Absorption

Zhengchen Wu,^{†a} Wei Hu,^{†a} Ting huang, ^a Ping Lan,^{*b} Ke Tian, ^a Feifie Xie, a and Lei Li^{*a}

† The first two authors contributed equally to this work.

^a College of Materials and Fujian Provincial Key Laboratory of Materials Genome, Xiamen University, Xiamen 361005, China

^b Material and Textile College, Jiaxing University, Jiaxing 314000, China

Figure S1. SEM images of (a and d) CP-0-1; (b and e) CP-0.4-1 and (c and f) CP-0.8-

1.

Figure S2. (a) Nitrogen adsorption-desorption isotherms and (b) pore size distribution calculated using DFT method of CP-x-1.

Figure S3. (a) XRD patterns and (b) Raman spectra of CP-x-1 prepared using precursors with different water phase volume fractions.

Figure S4. The SEM figures (a and b) and N2 absorption-desorption isotherms (c) of CP-0.8-1 before and after pressing procedure. The sample after pressing procedure is prepared by immersing the test sample of CP-0.8-1 in hexane to remove the paraffin. It is obvious that these two samples possess almost the same micro-sized porous structure and N2 absorption-desorption isotherm (nano-sized porous structure), suggesting that the pressing process has negligible influence on the porous structure.

absorbents	thickness (mm)	RL _{max} (-dB)	EAB (GHz)
Fe ₃ O ₄ /graphene ¹	3.5	-32.0	4.5
PPy@PANI-1.2 ²	2.0	-34.8	4.7
RGO/MnFe ₂ O ₄ /PVDF ³	3.0	-29.0	4.9
BaTiO ₃ ⁴	2.0	-21.8	1.8
$C@Fe@Fe_3O_4{}^5$	1.5	-40.0	5.2
Fe ₃ O ₄ -graphene ⁶	4.5	-40.0	2.3
TiO_2^7	4.0	-36.9	1.0
Fe/C ⁸	2.0	-22.6	5.3
CP-0.8-1 (this work)	2.46	-56.4	6.0

 Table S1. MA performance of representative MA materials reported previously and

 CP-0.8-1

References

- 1. X. Jian, B. Wu, Y. F. Wei, S. X. Dou, X. L. Wang, W. D. He and N. Mahmood, *ACS Appl. Mater. Interfaces*, 2016, **8**, 6101-6109.
- 2. C. H. Tian, Y. C. Du, P. Xu, R. Qiang, Y. Wang, D. Ding, J. L. Xue, J. Ma, H. T. Zhao and X. J. Han, *ACS Appl. Mater. Interfaces*, 2015, **7**, 20090-20099.
- 3. X. J. Zhang, G. S. Wang, W. Q. Cao, Y. Z. Wei, J. F. Liang, L. Guo and M. S. Cao, *ACS Appl. Mater. Interfaces*, 2014, **6**, 7471-7478.
- 4. Y. F. Zhu, L. Zhang, T. Natsuki, Y. Q. Fu and Q. Q. Ni, *ACS Appl. Mater. Interfaces*, 2012, **4**, 2101-2106.
- H. L. Lv, G. B. Ji, W. Liu, H. Q. Zhang and Y. W. Du, *J. Mater. Chem. C*, 2015, 3, 10232-10241.
- 6. X. L. Zheng, J. Feng, Y. Zong, H. Miao, X. Y. Hu, J. T. Bai and X. H. Li, *J. Mater. Chem. C*, 2015, **3**, 4452-4463.
- J. Y. Dong, R. Ullal, J. Han, S. H. Wei, X. D. Ouyang, Jun Zhe and W. Gao, J. Mater. Chem. A, 2015, 3, 5285-5288.
- R. Qiang, Y. C. Du, H. T. Zhao, Y. Wang, C. H. Tian, Z. G. Li, X. J. Han and P. Xu, J. Mater. Chem. A, 2015, 3, 13426-13434.