Formation Mechanism of 2D SnS_2 and SnS by Chemical Vapor Deposition using $SnCl_4$ and H_2S

Haodong Zhang,^{1,2} Yashwanth Balaji,^{2,3} Ankit Nalin Mehta,^{2,4} Marc Heyns,^{2,3} Matty Caymax,² Iuliana Radu,² Wilfried Vandervorst,^{2,4} Annelies Delabie^{1,2*}

1 Department of Chemistry, KU Leuven, 3001 Leuven, Belgium

2 Imec, Kapeldreef 75, 3001 Leuven, Belgium

3 Department of Materials Engineering, KU Leuven, 3001 Leuven, Belgium

4 Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium

Table S1. Thermodynamic data for the calculation of changes in Gibbs free energy for different possible reactions in the CVD process using SnCl₄ and H_2S .¹⁻³

Species	Phase	ΔH_f^0 (kJ/mol)	$S^{0}(\mathbf{J/mol} \cdot K)$
SnCl ₄	Liquid	-478.47	366.89
H ₂ S	Gas	-20.5	205.6
SnS ₂	Hexagonal	-153.6	87.4
SnS	Orthorhombic	-107.9	77
HCl	Gas	-92.31	186.9
S ₂	Gas	128.6	228.1
H ₂	Gas	0	130.68

Figure S1. Images of the reactor for the CVD of SnS_x using $SnCl_4$ and H_2S in this work. (a) Reactor without deposition of sulfur. (b) Reactor after the CVD of SnS, where the presence of yellow products on the inner wall of reactor indicates the deposition of elemental sulfur.

Reference

[1] J. Ahn, M. Lee, H. Heo, J. Sung, K. Kim, H. Hwang and M. Jo, Nano Lett., 2015, 15, 3703.

[2] H. Gamsjager, Chemical Thermodynamics of Tin, OECD Publishing, Paris, France 2012.

[3] P. Linstrom, and W. Mallard, NIST Chemistry WebBook, <u>https://www.nist.gov/</u>, accessed: April, **2018**.