Persistent luminescence warm-light LEDs based on Ti-doped RE₂O₂S materials prepared by rapid and energy-saving microwave-assisted synthesis

José Miranda Carvalho,^{a,b} Cássio Cardoso Santos Pedroso,^c Ian Pompermayer Machado,^b Jorma Hölsä,^d Lucas Carvalho Veloso Rodrigues,^b Pawel Głuchowski,^e Mika Lastusaari,^{f,g} Hermi Felinto Brito^{*b}

- a. Institute of Physics, University of São Paulo, 05508-000, São Paulo-SP, Brazil
- b. Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-900, São Paulo-SP, Brazil
- c. Department of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-900, São Paulo-SP, Brazil
- d. University of the Free State, Department of Physics, Bloemfontein, ZA-9300, South Africa.
- e. Institute of Low Temperature and Structure Research, PL-50422 Wroclaw, Poland
- f. University of Turku, Department of Chemistry, FI-20014 Turku, Finland
- g. Turku University Centre for Materials and Surfaces (MatSurf), FI-20014 Turku, Finland

Supporting Information

Figure S1. Microwave-assisted solid-state synthesis setup to obtain the oxysulfide materials. Both external and internal crucible are made from alumina. The microwave susceptor used was granular carbon. The thermal insulation is a low-density aluminosilicate brick. All the materials were prepared in a conventional domestic microwave oven.

Figure S2. Correlation between the temperature of the sample crucible (surrounded by the activated charcoal) and the microwave exposition time. Each temperature point was measured with a Homis H811-451 hand pyrometer.

Figure S3. X-ray powder diffraction patterns of the RE₂O₂S:Ti,Mg²⁺ [RE: La (left) and Y (right)] materials obtained with 25 minutes of microwave irradiation by microwave-assisted solid-state synthesis, with the Rietveld refinement results.

Figure S4. X ray powder diffraction pattern of the Y_2O_2S material obtained with 300% of excess of sulfur in the precursor, using the same pre adjusted microwave program.

Figure S5. SR-XANES spectra at the sulfur K-edge of the standards materials for sulfur speciation.

Figure S6. Synchrotron Radiation VUV-UV spectra (left) and derivative of the intensity (right) of the RE_2O_2S :Ti, Mg^{2+} materials obtained by the microwave-assisted solid-state method.

Figure S7. Photoluminescence emission spectra of the light emitting diodes devices fabricated from a AlGaN LED covered with a polydimethylsiloxane matrix doped with 10 %-wt of the RE_2O_2S :Ti,Mg²⁺ (RE: Gd and Y) materials.