Supporting Information

A low temperature and air-sinterable copper-diamine complexbased metal organic decomposition ink for printed electronics Yue Dong^{1,2}, Zhijie Lin^{1,2,3}, Xiaodong Li^{1,2*}, Qi Zhu^{1,2}, Ji-Guang Li^{1,2,4}, Xudong Sun^{1,2,5} ¹Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, Liaoning 110819, China

Northeastern University, Shenyang, Liaoning 110819, China

³Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China ⁴Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan

⁵Liaoning Engineering Laboratory of Special Optical Functional Crystals, School of Environment and Chemical Engineering, Dalian University, Dalian, Liaoning 116622, China

Fig. S1 FTIR speatra of amine, Cuf-amine complex and films heated from 90-150 °C: (a) EA, (b) PA, (c) BA, (d) HA, (e) EDA.

Fig. S2 XRD patterns of Cuf·4H₂O powder heated at 300 °C for 1 min.

Fig. S3 TG and DSC curves of ink complex with (a) EA, (b) PA, (c) HA and (d) EDA.

Fig. S4 Photos of films heated at various temperatures from (a) Cuf-BA ink, (b) Cuf-PDA ink.

Fig. S5 UV-vis spectra of Cuf-amine complex with various amines.

Temperature (°C)	Time (min)	Sheet resistance (Ω /sq)	Thickness (µm)	Resistivity ($\Omega \cdot cm$)
130	1	3.361	1.22	4.1×10 ⁻⁴
	5	1.186	1.18	1.4×10 ⁻⁴
	10	1.024	1.27	1.3×10 ⁻⁴
	20	0.968	1.24	1.2×10 ⁻⁴
	30	0.728	1.14	8.3×10 ⁻⁵
	40	0.712	1.11	7.9×10 ⁻⁵
	60	0.542	1.31	7.1×10 ⁻⁵
150	1	0.778	1.26	9.8×10 ⁻⁵
	5	0.398	1.18	4.7×10 ⁻⁵
	10	0.556	1.15	6.4×10 ⁻⁵
	20	0.696	1.25	8.7×10 ⁻⁵
	30	0.722	1.26	9.1×10 ⁻⁵
	40	0.736	1.29	9.5×10 ⁻⁵
	60	1.034	1.16	1.2×10 ⁻⁴
180	1	0.162	1.11	1.8×10 ⁻⁵
	5	0.333	1.23	4.1×10 ⁻⁵
	10	0.556	1.26	7.0×10 ⁻⁵
	20	0.846	1.30	1.1×10-4
	30	0.945	1.27	1.2×10 ⁻⁴
	40	1.167	1.20	1.4×10 ⁻⁴
	60	1.270	1.26	1.6×10 ⁻⁴
200	1	0.432	1.18	5.1×10 ⁻⁵
	5	0.765	1.15	8.8×10 ⁻⁵
	10	1.322	1.21	1.6×10 ⁻⁴
	20	1.550	1.29	2.0×10 ⁻⁴
	30	2.203	1.18	2.6×10 ⁻⁴
	40	2.541	1.22	3.1×10-4

Table S1. The sheet resistance, thickness and resistivity of films heated at various temperatures for different time.

250	60	3.047	1.28	3.9×10 ⁻⁴
	1	6.807	1.19	8.1×10 ⁻⁴
	5	35.200	1.25	4.4×10-3
	10	93.023	1.29	1.2×10 ⁻²
	20	1092.437	1.19	1.3×10 ⁻¹
	30	1282.051	1.17	1.5×10 ⁻¹
	40	1382.114	1.23	1.7×10 ⁻¹
	60	1417.323	1.27	1.8×10-1
300	1	24793.388	1.21	3.0
	5	44067.797	1.18	5.2
	10	48412.698	1.26	6.1
	20	59689.922	1.29	7.7
	30	80645.161	1.24	10.0
	40	81102.362	1.27	10.3
	60	88983.051	1.18	10.5

Fig. S6 FTIR spectra of films heated from various temperatures from Cuf-PDA ink in Ar.

Fig. S7 Viscosity and contact angle of Cuf-PDA.