Supporting Information

Highly π-Extended Small Molecules with Bis(alkylthio)methylene Side Chains for Organic Field-effect Transistors

Seung-Hoon Lee^{a,d}, Bogyu Lim^b*, Mingyuan Pei^c, Hoichang Yang^c, Yong-Young Noh^a*

^a Department of Energy and Materials Engineering, Dongguk University, 26 Pil-dong, 3-ga, Jung-gu, Seoul 100-715, Republic of Korea

^b Future Technology Research Center, Corporate R&D, LG Chem/LG Science Park,

30, Magokjungang 10-ro, Gangseo-gu, Seoul, 07796, Republic of Korea

^c Department of Applied Organic Materials Engineering, Inha University, Incheon 22212, South Korea

^d present address: Energy Materials Research Center, Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-Ro, Yuseong-Gu, Daejeon 34114, Republic of Korea

Figure S1. ¹H NMR spectrum for compound 2a

Figure S2. MALDI-TOF spectrum for compound 2a

Figure S3. ¹H NMR spectrum for compound 2b

Figure S4. MALDI-TOF spectrum for compound 2b

Figure S5. ¹H NMR spectrum for compound 3a

Figure S6. MALDI-TOF spectrum for compound 3a

Figure S7. ¹H NMR spectrum for compound 3b

Figure S8. MALDI-TOF spectrum for compound 3b

Figure S9. ¹H NMR spectrum for SMOIC

Figure S10. MALDI-TOF spectrum for SMOIC

Figure S11. ¹H NMR spectrum for SEHIC

Figure S12. MALDI-TOF spectrum for SEHIC

Figure S13. 1D profiles for SMOIC and SEHIC in-plane and out-of-plain directions

Figure S14. Tapping-mode AFM phase images of the small molecule thin films

Figure S15. Transfer characteristics of OTFTs based on small molecule thin film for different

annealing temperatures

	Annealing Temperature (°C)							
	110		150		200		250	
	P-type							
	μ	V_{th}	μ	V_{th}	μ	V_{th}	μ	V_{th}
SMOIC	0.044 (0.023)	-46.36 (10.24)	0.039 (0.013)	-54.57 (1.82)	0.052 (0.002)	-52.40 (1.44)	0.04 (0.007)	-57.15 (0.95)
SEHIC	0.148 (0.024)	-39.54 (1.66)	0.137 (0.024)	-46.64 (2.32)	0.035 (0.020)	-60.16 (6.17)	0.068 (0.004)	-59.42 (1.94)
	N-type							
SMOIC	4×10^{-4} (4.74 $\times 10^{-5}$)	78.96 (0.45)	3 × 10-	78.24	0.02 (0.003)	70.75 (0.38)	0.023 (0.004)	68.24 (1.16)
SEHIC	0.023 (0.004)	68.24 (1.16)	0.018 (0.005)	65.13 (0.26)	0.004 (0.001)	71.33 (1.89)	0.007 (0.0003)	74.01 (0.26)

Table S1. OTFT device performance for different annealing temperatures