Supplementary Information

Laser filament bottom-up growth sintering for multi-planar diffraction-limit printing and its application to ultratransparent wearable thermo-electronics

Seung-Gab Kwon^a, Seunghyun Back^a, Jong Eun Park^b and Bongchul Kang^a*

^a Department of Mechanical System Engineering, Kumoh National Institute of Technology (KIT), Gumi, 39177, Korea.

^b Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.

* Corresponding author; E-mail: kbc@kumoh.ac.kr

Characterization of Bessel beam

Figure S1 Spatial intensity profile of Bessel beam using knife-edge method.

Durability of pattern fabricated by laser filament growth sintering

Figure S2 Peeling-off test of specimen fabricated in a laser power of 75 mW using scotch tape.

Laser filament growth sintering on plastic film

Figure S3 Microscopy of fabricated pattern by laser filament growth sintering on polyimide film.