Supplementary Information

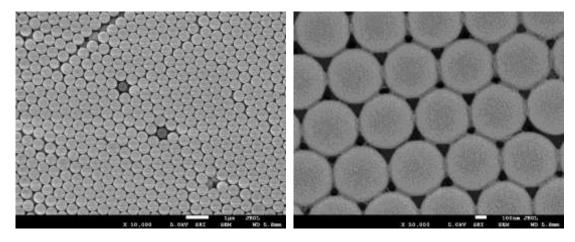
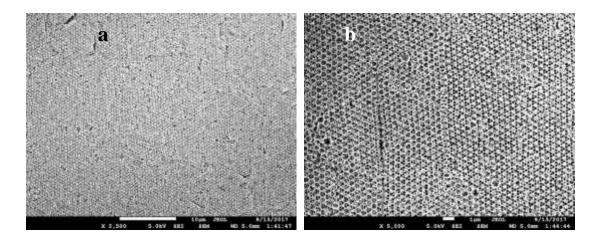



Figure S1. SEM images of self-assembled PS template of different magnifications

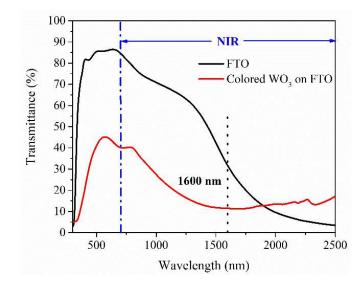
Figure S2. SEM images (90° Top View) of TiO_2 -WO₃ IO samples taken at magnification of 2500 and 5000.

Calculation of Volume Ratio of WO₃ to TiO₂.

The atomic ratio of TiO_2 and WO_3 has been obtained through EDX measurement shown in Fig 3b. Currently, the volume ratio of these two components has been re-calculated based on the more accurate TEM-EDX data (as opposed to SEM-EDX previously) and the ratio is 3.58. The detailed calculation is shown below and has also been added into the Supplementary Information.

The weight% (Wt%) and atomic% (At%) of Ti and W in TiO_2 -WO₃ inverse opal are obtained from TEM-EDX as shown below.

Element	Wt%	At%
ΤίΚ	11.09	32.37
WL	88.91	67.63
Matrix	Correction	MThin


For the hybrid composite, the only components considered are WO₃ and TiO₂. Thus,

$$\frac{At_w}{At_T} = \frac{At_{WO_3}}{At_{TiO_2}} = \frac{M_{WO_3}}{M_{TiO_2}}$$

$$\frac{V_{WO_3}}{V_{TiO_2}} = \frac{m_{WO_3}/\rho_{WO_3}}{m_{TiO_2}/\rho_{TiO_2}} = \left(\frac{m_{WO_3}}{m_{TiO_2}}\right) \cdot \left(\frac{\rho_{TiO_2}}{\rho_{WO_3}}\right)$$
$$= \frac{M_{WO_3} \cdot Molar \ mass \ of \ WO_3}{M_{TiO_2} \cdot Molar \ mass \ of \ TiO_2} \cdot \frac{\rho_{TiO_2}}{\rho_{WO_3}}$$
$$= \frac{(67.63)(231.84)}{4.23}$$

$$=$$
 3.58 (3 s.f.)

where V, M, m, ρ refers to the volume, Molar %, molecular mass, density.

Figure S3. Vis-NIR Transmittance Spectrum of FTO and FTO|WO₃ samples refer to air.

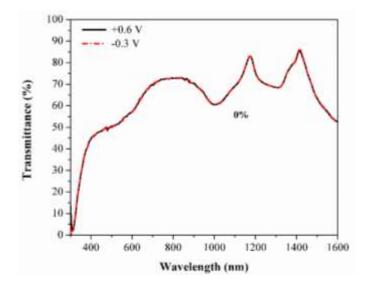
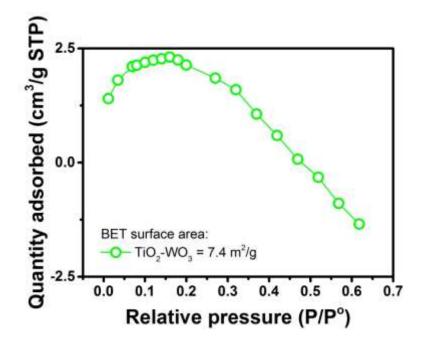



Figure S4. Transmittance Spectrum of TiO₂ IO samples at applied potentials.

Figure S5. BET isotherm linear plot for TiO₂-WO₃ core-shell IO.

$$A_{s} = \frac{1}{\rho_{WO_{3}*l}}$$
$$= \frac{1}{\frac{7160000g}{m^{3}}*464.118*10^{-9}m}$$
$$= 0.300 \text{ m}^{2}/\text{g (3 s.f.)}$$

where A_s , ρ and \lfloor refers to the specific surface area, density and film thickness. \lfloor was measured using a stylus profiler (Alpha-Step D-500).