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EXPERIMENTAL DETAILS

Materials and device fabrication

Poly(3-(4-carboxylbutyl) thiophene) (P3CT) (Rieke, America) solutions (1 mg of 

P3CT in 1 mL methanol) are spin-coated on the clean ITO glass (RS ≤ 15 Ω sq-1) at 

4000 rpm for 30 s to fabricate a thin P3CT HTL. Then, perovskite precursor solutions 

(1.45 M in a N, N-dimethylformamide/dimethyl sulfoxide co-solvent with a 1:1 molar 

ratio of PbI2 to methylammonium iodide (≥ 99.5%) (Xi’an Polymer Light Technology 

Corp.)) are deposited on the ITO/ P3CT templates in a glovebox by spin-coating at 

4800 rpm for 20 s with a chlorobenzene (CB) treatment 8 s after the spin-coating begins. 

After that, the films are annealed at 60 °C for 20 s and at 80 °C for 2 minutes. Solutions 

of CPTA-E (Sigma-Aldrich, 97%) in chlorobenzene: chloroform (CF) co-solvent with 

a volume ratio of 1:1 are prepared with a concentration of 5 (30 nm), 10 (50 nm), 15 

(70 nm) and 20 mg mL-1 (90 nm). The annealed perovskite films are covered by the 

CPTA-E solutions at 2000 rpm for 60 s, followed by the deposition of 70 nm patterned 

Al top electrodes by thermal evaporation. The P3CT and perovskite precursor solutions 

are filtered through a 0.45 μm polytetrafluoroethylene filter prior to use.

Characterization and measurements

The cross-sections of devices are observed by scanning electron microscopy 

(SEM) (S4800, Hitachi, Japan). Ultraviolet photoelectron spectroscopy (UPS) 

measurements and X-ray photoelectron spectroscopy (XPS) measurements are carried 

out using a Kratos AXIS ULTRA DALD XPS/UPS system. The UPS measurements 

are conducted by Shimadzu Spectrometer (AXIS ULTRA DLD) with a He Ⅰ (21.2 



eV) discharge lamp. The photocurrent density-voltage characteristics (Keithley 2410 

source meter) are measured using a calibrated solar simulator (Newport Inc.) with an 

AM 1.5G filter under an irradiation intensity of 100 mW cm-2. The external quantum 

efficiency measurement is conducted with a Newport quantum efficiency measurement 

system (ORIEL IQE 200TM) combined with a lock-in amplifier and a 150 W Xe lamp 

in the ambient atmosphere. The light intensity at each wavelength is calibrated by a 

standard Si/Ge solar cell. Top-view SEM (S4800, Hitachi, Japan) and atomic force 

microscopy are performed to observe the surface morphology of the CPTA-E and 

PCBM ETL. XPS survey scans are collected to identify the overall surface composition 

using a monochromatic Al Kα X-ray source (1486.6 eV). High-resolution scans are 

obtained at a 20 eV pass energy and a 50 meV channel width to identify the bonding 

states. Photoluminescence spectra are analyzed using a fluorescence spectrophotometer 

(F-4600, Hitachi Ltd., Tokyo, Japan) with a 150 W Xe lamp as the excitation source at 

room temperature. Ultraviolet-visible absorption spectra is recorded on a GS54T 

spectrophotometer (Shanghai Lengguang Technology Co., China). The mobilities (μ) 

of CPTA-E and PCBM are evaluated with the Mott-Gurney law, given by the equation: 

J=9ε0εrμV2exp(0.89β(V/L)0.5)/(8L3), where J stands for the current density, ε0 is the 

permittivity of free face, εr is the relative permittivity of the medium (assuming that 

3.4), V is the effective voltage, L is the thickness of the active layer and β is the field 

activation factor.



Fig. S1 (a) UPS of CPTA-E and PCBM ETM. The center is the full UPS spectra. The 

left is the secondary-electron cut-off. The right is the valence-band region. UV-vis 

absorption spectrums of the CPTA-E (b) and PCBM film (c). The insets are the Tauc 

plots and the corresponding band gap of these two materials.



Fig. S2 Photographic images of CPTA-E solutions with a concentration of (a) 10 mg 

mL-1 and (b) 20 mg mL-1 in CB:CF co-solvent, respectively. Compared with the 10 mg 

mL-1 CPTA-E solution (Figure S2a), the 20 mg mL-1 CPTA-E solution (Figure S2b) 

becomes opaque with some aggregations.



Fig. S3 Histograms of device PCEs measured from 30 identical devices from 5 batches.



Fig. S4 Logarithmic plots of J−V characteristics of devices with the CPTA-E and 

PCBM ETL under dark.



Fig. S5 J-V characteristics of the electron-only devices based on the CPTA-E and 

PCBM ETL with a structure of ITO/ZnO/ETL/ZnO/Al.



Fig. S6 Alternating current impedance spectrometry (ACIS) of PSCs devices based on 

CPTA-E and PCBM ETL under dark.



Fig. S7 J-V curves of the perovskite solar cells devices with the C60, CPTA and CPTA-E 

ETL under AM 1.5 G illumination (100 mW cm-2). 

Table S1 Photovoltaic parameters of devices with the C60, CPTA and CPTA-E ETL 

under AM 1.5 G illumination (100 mW cm-2).

ETL VOC (V) JSC (mA cm-2) FF (%) PCE (%)

C60 0.996 19.16 71.70 13.69

CPTA 0.999 17.79 61.43 10.93

CPTA-E 1.106 19.80 78.08 17.10

Perovskite solar cells with C60 ETL show a PCE of 13.69%, a VOC of 0.99 V and 

a FF of 71.70%. We think that the unsuitable energy level of C60 lead to the inferior 

performance. The LUMO energy level is about -4.5 eV from previous reports, leading 

to inevitably energy loss at perovskite/ETL interface. The CPTA based device shows a 

relatively low power conversion efficiency (PCE) than CPTA-E based device. The 

reasonable explanation might be that CPTA has a worse solubility in chlorobenzene: 



chloroform solvent. Therefore, the spin-coated CPTA ETL has a rough surface and poor 

contact with perovskite, which result in the low JSC, FF and PCE.



Fig. S8 Statistic photovoltaic parameters of different CPTA-E annealing temperature. 

As shown in Figure S7, 60℃ annealing scarcely changed the devices performance. But 

when the annealing temperature rose to 80℃, PCE of the devices began to decreased. 

After 100℃ annealing, the PCE showed considerable decline. These results indicate 

that high temperature over 80℃ could decompose the structure of perovskite, leading 

to the decrease of devices performance.



Fig. S9 Evolution of normalized PCE of CPTA-E and PCBM based perovskite solar 

cells in ambient conditions (about 50% RH). After storing in air for seven days, both of 

PCE of these two devices decreased to lower than 50% of their pristine PCE. The air 

instability of these devices might result from the hygroscopicity of the thin P3CT HTL. 

As shown in Fig. S8, the CPTA-E based device has a better air stability than the PCBM 

one, which is contributed to the relatively dense and compact CPTA-E ETL.



Fig. S10 (a) Top-view SEM image of PCBM film spin-coated from chlorobenzene 

solvent. (b) Corresponding J-V curve of the PCBM based device. The PCBM film made 

from chlorobenzene solvent has less pinholes. Compared to the PCBM film made by 

chlorobenzene: chloroform hybrid solvent, the PCBM film made from chlorobenzene 

solvent has less pinholes. The perovskite device with PCBM ETL shows a PCE of 

15.6% with a VOC of 1.082 V, a JSC of 18.73 mA cm-2 and a FF of 77.11%. Though the 

numbers of pinholes of PCBM film is reduced, the PCE of PCBM based device (15.6%) 

is still lower than the CPTA-E based device (17.44%). 

Table S2 Photovoltaic parameters of PCBM device fabricated from chlorobenzene 

solvent under AM 1.5 G illumination (100 mW cm-2).

ETL VOC (V) JSC (mA cm-2) FF (%) PCE (%)

PCBM 1.082 18.73 77.11 15.60
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