Electronic Supporting Information

The Luminescence Enhancement and Energy Transfer of Ce³⁺ and Sm³⁺ in CaSrSiO₄ Phosphor

Wasim ullah khan^a, Lei Zhou^{*a}, Qiongyun Liang^a, Xiaohui Li^a, Jing Yan^a, Naveed ur Rahman^a Leonid Dolgov^a, Shahid ullah khan^b, Jianxin Shi^{*a} and Mingmei Wu^a

a. MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Key Laboratory of Environment and Energy Chemistry of Guangdong Higher Education Institutes, School of Chemistry, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, P. R. China.
b. College of Plant Sciences and Technology and National Key Laboratory of Crop Genetics Improvement, Huazhong Agricultural University, Wuhan 430070, P. R. China.

* Corresponding authors. Tel: +86 20 8411 2830; fax: +86 20 8411 2245. E-mail address: nx-zhoulei@foxmail.com; cessjx@mail.sysu.edu.cn

Atom	site	Х	Y	Z
Sr1	4a	0.2812(43)	0.4260(92)	0.7506(26)
Sr2	4a	0.4502(44)	0.0919(63)	0.7881(26)
Sr3	4a	0.1122(48)	0.0606(71)	0.7844(25)
Cal	4a	0.0024(99)	0.1996(12)	0.2811(59)
Ca2	4a	0.3343(10)	0.1922(14)	0.2707(59)
Ca3	4a	0.1677(93)	0.3125(16)	0.2446(54)
Si1	4a	0.2642(15)	0.0805(25)	0.7712(61)
Si2	4a	0.4169(92)	0.4497(20)	0.7716(57)
Si3	4a	0.0974(18)	0.4360(24)	0.8184(49)
01	4a	0.111	0.065	0.318
O2	4a	0.445	0.067	0.322
03	4a	0.249	0.194	0.531
O4	4a	0.065	0.328	0.987
05	4a	0.227	0.156	0.981
O6	4a	0.083	0.309	0.542
07	4a	0.281	0.436	0.3
08	4a	0.333	0.061	0.82
09	4a	0.166	0.431	0.813
O10	4a	0.403	0.328	0.978
011	4a	0.002	0.056	0.753
012	4a	0.403	0.341	0.5

 $\textbf{Table S1}. \ \text{Refined unit cell parameters and atomic coordinates of } Ca_{0.97}Sr_{0.97}Ce_{0.01}Sm_{0.02}Na_{0.03}SiO_{4.}$

Formula: CaSrSiO₄;

Symmetry: Orthorhombic;

Space Group: *Pna2*₁(33);

Cell parameters: a = 20.8653 (14) Å; b = 9.47962 (62) Å; c = 5.59615(37) Å; $V = 1106.89 (13) \text{ Å}^3$

Sample	Sample Composition (y)	CIE coordinates (x, y)	
1	0	(0.155, 0.066)	
2	0.005	(0.200, 0.092)	
3	0.01	(0.238, 0.132)	
4	0.015	(0.281, 0.163)	
5	0.02	(0.302, 0.183)	
6	0.025	(0.390, 0.245)	
7	$Ca_{0.99}Sr_{0.99}Sm_{0.01}Na_{0.01}SiO_4$	(0.599, 0.389)	

Table S2. Comparison of the CIE Chromaticity Coordinates (x, y) for Ca_{0.99-y}Sr_{0.99-y}Ce_{0.01}Sm_yNa_{0.01+y}SiO₄(y = 0 to 0.025) and Ca_{0.99}Sr_{0.99}Sm_{0.01}Na_{0.01}SiO₄ phosphors.

Table S3. Lifetimes, fitting parameters, ET rates, and ET efficiencies

Sm ³⁺	$ au_1$ (ns)	$ au_2$ (ns)	A_1	A_2	R ² _{adj}	$ au^*$ (ns)	$^{\mathrm{a}}k_{\mathrm{ET}}(\mathrm{\mu s})^{-1}$	η (%)
0	38.9 ± 0	38.9 ± 0	0.1185	0.1185	0.9994	38.9	0.0	0.0
0.005	3 ± 0.6	40.4 ± 0.5	0.2965	0.6886	0.9959	37.8	0.75	2.83
0.01	$50.9{\pm}0.3$	26.3 ± 0.5	0.6657	0.2080	0.9970	36.14	1.96	7.10
0.015	22 ± 0.08	$44.8{\pm}0.2$	0.9776	0.5912	0.9958	34.04	3.67	12.49
0.02	17 ± 0.04	38.7 ± 0.2	0.1416	0.1685	0.9957	29.44	8.26	24.32
0.025	13 ± 0.02	37.2±0.1	0.9863	0.5632	0.9918	23.08	17.62	40.67

for $Ca_{0.99-y}Sr_{0.99-y}Ce_{0.01}Sm_yNa_{0.01+y}SiO_{4.}$

Table S4. The fitting parameters and the c_A/c_0 ratios obtained from the Inokuti-Hirayama model.

$c_{\rm A}({\rm Sm}^{3+})$	$R^2_{ m adj}$	$c_{\rm A}/c_0$
0	0.9994	-
0.005	0.9959	0.28
0.01	0.9970	0.22
0.015	0.9958	0.45
0.02	0.9957	0.53
0.025	0.9918	1.14

Fig. S1 XRD profiles of as-synthesized phosphors of $Ca_{0.99}Sr_{0.99}Ce_{0.01}Na_{0.01}SiO_4$ (a), $Ca_{0.99}Sr_{0.99}Sm_{0.01}Na_{0.01}SiO_4$ (b), $Ca_{0.98}Sr_{0.98}Ce_{0.01}Sm_{0.01}Na_{0.02}SiO_4$ (c) and $Ca_{0.97}Sr_{0.97}Ce_{0.01}Sm_{0.02}Na_{0.03}SiO_4$ (d).

Fig. S2 Variation of emission intensity and peak wavelength as a function of Ce^{3+} concentration in $Ca_{1-x}Sr_{1-x}Ce_xNa_xSiO_4$.

Fig. S3 Decay curves of Ca_{0.99}Sr_{0.99}Ce_{0.01}Na_{0.01}SiO₄ phosphor monitored at some selected wavelengths in the corresponding emission spectrum.

Fig. S4 Spectral overlapping between the Ce^{3+} emission band of $Ca_{0.99}Sr_{0.99}Ce_{0.01}Na_{0.01}SiO_4$ and the excitation spectrum of $Ca_{0.99}Sr_{0.99}Sm_{0.01}Na_{0.01}SiO_4$.

Fig. S5 Decay curves of $Ca_{0.99-y}Sr_{0.99-y}Ce_{0.01}Sm_yNa_{0.01+y}SiO_4$ (y = 0 to 0.025) phosphors.

Fig. S6 The fitting lines of $\ln[(I_0/I)-1]$ versus 1/kT for the blue (a) and yellow-orange (b) emissions of Ca_{0.97}Sr_{0.97}Ce_{0.01}Sm_{0.02}Na_{0.03}SiO₄ phosphor.