Electronic Supplementary Information

Design of Novel Graphdiyne-based Materials with Large Second-Order

Nonlinear Optical Properties

Xiaojun Li,^a

^aThe Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province,

School of Chemical Engineering, Xi'an University, Xi'an 710065, Shaanxi, P. R. China

Contents:

- Simulated infrared spectrum of the GDY cluster, Fig. S1;
- Electrostatic potential maps of the GDY and AM₃@GDY clusters, Fig. S2;
- The crucial transitions of crucial excited energies for the AM3@GDY clusters, Table S1

Fig. S1. Simulated infrared spectrum of the GDY cluster, obtained at the B3LYP/6-31+G(d) level of theory. The scaling factor of 0.953 was applied to correct all calculated vibrational frequencies. The vibrations for the C \equiv C stretching modes are specially labeled.

Fig. S2. Electrostatic potential maps of the (a) GDY, (b) Li₃@GDY, (c) Na₃@GDY, and (d) K₃@GDY clusters.

Table S1 Mean dipole moment (μ_0 , in a.u.), static polarizability (α_0 , in a.u.), the static first hyperpolarizability (β_{tot} , in a.u.), transition energy (ΔE , in eV), maximum oscillator strength (f_0 , in a.u.), the change in dipole moment ($\Delta \mu$, in a.u.), and crucial transitions of crucial excited energies for the AM₃@GDY (AM = Li, Na, K) clusters.

Clusters	μ_0	α_0	$eta_{ ext{tot}}$	ΔE	f_0	$\Delta \mu$	Crucial Transitions*
Li ₃ @GDY	0.84	671.19	9208.88	3.32	0.178	2.186	β (H \rightarrow L+16) (35%),
							$\beta(\mathrm{H} \rightarrow \mathrm{L+20}) \ (19\%)$
Na ₃ @GDY	1.62	786.44	69788.24	2.75	0.232	3.444	$\alpha(\mathrm{H}\rightarrow\mathrm{L+10})~(26\%),$
							$\alpha(H \rightarrow L+5) (11\%)$
K ₃ @GDY	3.32	1065.49	161201.31	I: 2.98	0.777	10.650	β (H-2 \rightarrow L) (14%),
							β (H-1 \rightarrow L+1) (13%)
				II: 1.91	0.315	6.735	$\alpha(H \rightarrow L+4) (34\%),$
							$\beta(\mathrm{H} \rightarrow \mathrm{L+2}) (22\%)$

*H = HOMO, L = LUMO.