Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Ultra-stable 2D Layered Methylammonium Cadmium Trihalide Perovskite Photoelectrodes

Hsien-Yi Hsu, Li Ji, Chengxi Zhang, Chun Hong Mak, Rugeng Liu, Tie Wang, Xingli Zou, Shao-Yuan Leu and Edward T. Yu

Figure S1. Scanning electrochemical microscopy (SECM) system. (a) Fabrication of perovskite spot array with different compositions using a piezoelectric dispenser (b) Screening analysis on perovskite photoelectrode arrays by SECM.

Empirical	CH₀CdI₃N		
Formula			
Molecular	MACdI ₃		
Formula			
FW	525.17		
Т(К)	293		
Lattice	Monoclinic		
Space group	P21/n		
a(Å)	9.05		
b(Å)	7.048		
c(Å)	14.74		
α(°)	90		
в(°)	90.23		
γ(°)	90		
V(Å3)	940		
Ζ	4		
d _{calc} (g/cm ³)	1.855		

Table S1. Crystal data and structure refinement for MACdI₃.

µ(mm⁻¹)

6.042

Table S2. Crystal data and structure refinement for (MA)₂CdI₄.

Empirical Formula	CH₅CdCl₃N	
Molecular	(MA) ₂ CdI ₄	
Formula		
FW	250.82	
Т(К)	293	
Lattice	Orthorhombic	
Space group	Стса	
a(Å)	7.391	
b(Å)	19.636	
c(Å)	7.5139	
α(°)	90	
β(°)	90	
γ(°)	90	
V(Å ³)	1090.5	
Ζ	1	
d _{calc} (g/cm ³)	4.583	
μ(mm⁻¹)	7.977	

Table S3. Crystal data and structure refinement for MACd₃Cl₇·3H₂O.EmpiricalCH₆Cd₃Cl₉NO

Empirical Formula	CH6Cd3Cl9NO		
Molecular Formula	MACd ₃ Cl ₇ -3H ₂ O		
FW	704.32		
Т(К)	296		
Lattice	Monoclinic		
Space group	P21/m		
a(Å)	6.7315		
b(Å)	15.9916		
c(Å)	6.9266		
α(°)	90		
в(°)	90.922		
γ(°)	90		
V(ų)	745.534		
Ζ	2		
d _{calc} (g/cm ³)	3.137		
μ(mm⁻¹)	5.824		

Materials	τ ₁ /ns (α ₁)	τ ₂ /ns (α ₂)	τ _{PL} ^{a)} /ns	R ²
CD-1	0.12 (95%)	1.68 (5%)	0.20 ± 0.02	0.99
CD-2	0.21 (87%)	1.70 (13%)	0.40 ± 0.03	0.98
CD-3	0.37 (72%)	1.75 (28%)	0.76 ± 0.01	1.00
CD-4	0.63 (69%)	3.45 (31%)	1.50 ± 0.02	0.99
CD-4, Day 60	0.32 (15%)	0.92 (85%)	0.83 ± 0.01	1.00

Table S4. Photoluminescene decay times (τ_s and τ_{PL}) and corresponding parameters of Cd-based hybrid materials, CD-1, CD-2, CD-3 and CD-4.

 a^{a} $\tau_{PL} = \langle \tau \rangle = \sum_{i} \alpha_{i} \tau.$

Figure S2. Band structures of MACdI₃ calculated by density functional theory.

Table S5. Long-term stability test for hybrid perovskite materials.

Materials	Time	Testing condition				Pomaining	
	(h)	Light/Dark	Temp. (°C)	Atmosphere (RH %)	Sealing	Photocurrent	Ref.
(MA) ₂ CdCl ₄	1440	Light	RT	Air(50)	No	>80%	This work
MAPbI₃	230	Light	RT	Air(50)	No	>80 %	This work
(FAI) _{0.81} (PbI ₂) _{0.85} (MABr) _{0.15} (PbBr ₂) _{0.15}	1080	Dark	RT	Air(40)	No	~80%	1
MAPbl ₂ Br	50	Dark	RT	Air	No	~80%	2
MAPbI _{3-x} Cl _x (PVK)	55	Light	RT	Air(40~50)	No	~80%	3
MAPbI₃	960	Dark	RT	N2	No	~80%	4
MAPbI _{3-x} Cl _x	1000	Light	40	N ₂	Yes	~80 %	5
MAPbI ₃	216	Dark	RT	Air(50)	No	~80%	6
MAPbI₃	70	Light	RT	Air(45~50)	No	~70%	7
MAPbI ₃	130	Dark	RT	Air	No	~80%	8
CsPbI ₂ Br	30	Dark	RT	Air(20)	No	~80%	9
Cs _{0.925} K _{0.075} Pbl ₂ Br	125	Dark	RT	Air(20)	No	~80%	9
CsSnI₃	336	Dark	RT	Air	No	~80%	10
FAPbI₃	360	Dark	RT	Desiccator(15)	No	~70%	11
CsPbI ₂ Br	990	Dark	RT	Glovebox	No	~80%	12
(FAPbI ₃) _{0.85} (MAPbBr ₃) _{0.15} (LiTFSI)	710	Dark	RT	Air(30)	No	~80%	13

Reference

- 1. Zhang, F. et al. Isomer Pure Bis PCBM Assisted Crystal Engineering of Perovskite Solar Cells Showing Excellent Efficiency and Stability. *Advanced Materials* **29** (2017).
- 2. Zhang, M. et al. Stable and Low Cost Mesoscopic CH3NH3PbI2Br Perovskite Solar Cells by using a Thin Poly (3 hexylthiophene) Layer as a Hole Transporter. *Chemistry-A European Journal* **21**, 434-439 (2015).
- 3. Huang, L. et al. Efficient and stable planar perovskite solar cells with a non-hygroscopic small molecule oxidant doped hole transport layer. *Electrochimica Acta* **196**, 328-336 (2016).
- 4. Gujar, T.P. & Thelakkat, M. Highly Reproducible and Efficient Perovskite Solar Cells with Extraordinary Stability from Robust CH3NH3PbI3: Towards Large Area Devices. *Energy Technology* **4**, 449-457 (2016).
- 5. Leijtens, T. et al. Overcoming ultraviolet light instability of sensitized TiO 2 with meso-superstructured organometal tri-halide perovskite solar cells. *Nature communications* **4**, 2885 (2013).
- 6. Christians, J.A., Miranda Herrera, P.A. & Kamat, P.V. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. *Journal of the American Chemical Society* **137**, 1530-1538 (2015).
- 7. Li, Y. et al. Multifunctional fullerene derivative for interface engineering in perovskite solar cells. *Journal of the American Chemical Society* **137**, 15540-15547 (2015).
- Kim, J.H. et al. High Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solution - Processed Copper - Doped Nickel Oxide Hole - Transporting Layer. Advanced Materials 27, 695-701 (2015).
- 9. Nam, J.K. et al. Potassium incorporation for enhanced performance and stability of fully inorganic cesium lead halide perovskite solar cells. *Nano letters* **17**, 2028-2033 (2017).
- 10. Yi, C. et al. Entropic stabilization of mixed A-cation ABX 3 metal halide perovskites for high performance perovskite solar cells. *Energy & Environmental Science* **9**, 656-662 (2016).
- 11. Li, Z. et al. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. *Chemistry of Materials* **28**, 284-292 (2015).
- 12. Zeng, Q. et al. Polymer Passivated Inorganic Cesium Lead Mixed Halide Perovskites for Stable and Efficient Solar Cells with High Open Circuit Voltage over 1.3 V. *Advanced Materials* (2018).
- 13. Qu, J. et al. Improved performance and air stability of perovskite solar cells based on low-cost organic hole-transporting material X60 by incorporating its dicationic salt. *Science China Chemistry* **61**, 172-179 (2018).