## Supporting Information

## High Photoluminescence Quantum Yield of 18.7% by Nitrogen-Doped Ti<sub>3</sub>C<sub>2</sub>

## MXene Quantum Dots

Quan Xu,<sup>a\*</sup> Lan Ding, <sup>a</sup> Yangyang Wen, <sup>a</sup> Wenjing Yang, <sup>a</sup> Hongjun Zhou, <sup>a</sup> Xingzhu Chen, <sup>b</sup> Jason Street, <sup>c</sup> Aiguo Zhou, <sup>d</sup> Wee-Jun Ong, <sup>e</sup> Neng Li, <sup>b\*</sup>

## AUTHOR ADDRESS:

- a. State Key Laboratory of Heavy Oil Processing, China University of petroleum(Beijing), 102249, China
- b. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Hubei, 430070, China
- c. Department of Sustainable Bioproducts, Mississippi State University, 39762, USA
- d. School of Materials Science and Engineering, Henan Polytechnic University, 454003, China
- Department of Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia

| Samples                            | quantum yields up (%) | Ref        |
|------------------------------------|-----------------------|------------|
| N-MQDs (160°C)                     | 18.7                  | This paper |
| Ti <sub>3</sub> C <sub>2</sub> QDs | 10                    | [18]       |
| Ti <sub>3</sub> C <sub>2</sub> QDs | 7.13                  | [19]       |
| MoS <sub>2</sub> QDs               | 4.4                   | [20]       |

 Table S1. The quantum yields up of the as-prepared N-MQDs and other material.

| Samples        | N-H (%) | pyrrole-like nitrogen (%) | graphitic nitrogen (%) | Ti-N (%) |
|----------------|---------|---------------------------|------------------------|----------|
| N-MQDs (120°C) | 65.2    | 34.8                      | 0                      | 2.5      |
| N-MQDs (160°C) | 0       | 51.6                      | 45.7                   | 2.7      |
| N-MQDs (200°C) | 0       | 14.2                      | 82.8                   | 3        |

 Table S2. Nitrogen atomic percentage of various chemical states in the as-prepared N-MQDs (from N1s high-resolution XPS).



Fig. S1. Diagram of the energy levels and charge-transfer processes inside the MQDs and N-MQDs materials.



Figure S2. SEM image of the pristine  $Ti_3C_2$ .



Figure S3. (a-c) TEM-EDS elemental mapping images of the pristine  $Ti_3C_2$  sheet.



Figure S4. (a) TEM and (b) HRTEM images of the treated Ti<sub>3</sub>C<sub>2</sub> (suspended in concentrated

sulphuric acid in an oil bath at 100°C for 24 h).



**Figure S5.** Diameter size distribution of N-MQDs of different hydrothermal temperature treatments: (a) 120°C, (b) 160°C, and (c) 200°C.



Figure S6. Thickness distribution of the prepared N-MQDs treated at (a) 120°C, (b) 160°C, and

(c) 200°C.



Figure S7. AFM images of the prepared N-MQDs treated at (a) 120°C, (b) 160°C, and (c)

200°C.



Figure S8. (a) XRD spectra of N-MQDs (160°C), pristine  $Ti_3C_2$  and  $Ti_3AlC_2$ . (b) Normalized GIXRD patterns of pristine  $Ti_3C_2$  and N-MQDs.



**Figure S9.** (a) Wide-scan XPS spectra for pristine Ti<sub>3</sub>C<sub>2</sub> and N-MQDs. High-resolution XPS spectra of (b) C1s, (c) N1s, and (d) O1s XPS spectra for the pristine Ti<sub>3</sub>C<sub>2</sub> and N-MQDs.



Figure S10. Work function of pristine  $Ti_3C_2$  QDs (MQDs) and N-MQDs.



**Figure S11.** Photoluminescence spectra of the N-MQDs treated at different hydrothermal reaction temperatures: (a) 120°C, (b) 160°C, and (c) 200°C. (d) Photoluminescence spectra (UV light 360 nm) of N-MQDs, ethanediamine (160°C, 12h) and Ti<sub>3</sub>C<sub>2</sub> (160°C, 12h, without acid treated).



Figure S12. Lifetime of N-MQDs as a function of hydrothermal reaction temperature.



Figure S13. The fluorescence intensity of N-MQDs at 447 nm excited at 360 nm as a function

of pH.



Figure S14. (a) Time-dependent fluorescence intensity and (b) absorption changes of the N-

MQDs (160°C).



Figure S15. Time-dependent fluorescence intensity of N-MQDs in (a) 50  $\mu$ M of H<sub>2</sub>O<sub>2</sub> solution and (b) 50  $\mu$ M of Fe<sup>2+</sup> solution. (c) The degree of diversity ( $\Delta$ F) of the N-MQDs with change over time in the presence of H<sub>2</sub>O<sub>2</sub> (50  $\mu$ M) and Fe<sup>2+</sup> (50  $\mu$ M) added simultaneously.