Supporting Information

Polarity Flipping in Iso-Type Heterojunction (p-

SnS/p-Si) to Enable a Broadband Wavelength

Selective Energy-Efficient Photodetector

Malkeshkumar Patel,^{a,b} Mohit Kumar,^{a,b} and Joondong Kim^{a,b,*}

^a Photoelectric and Energy Device Application Lab (PEDAL), Multidisciplinary Core Institute for Future Energies (MCIFE), Incheon National University, 119 Academy Rd. Yeonsu, Incheon, 22012, Republic of Korea

^b Department of Electrical Engineering, Incheon National University, 119 Academy Rd. Yeonsu, Incheon, 22012, Republic of Korea

* Email: joonkim@incheon.ac.kr

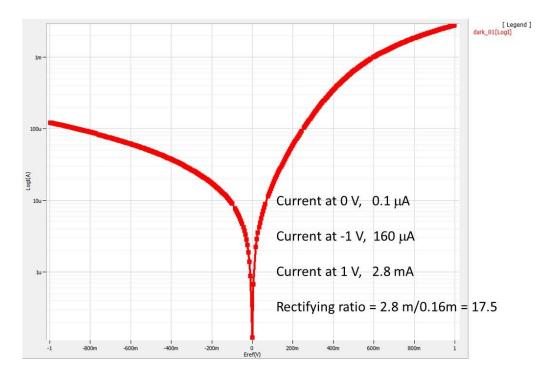


Fig. S1 Dark I-V characteristics of p-p isotype heterojunction (p-Si/p-SnS) device.

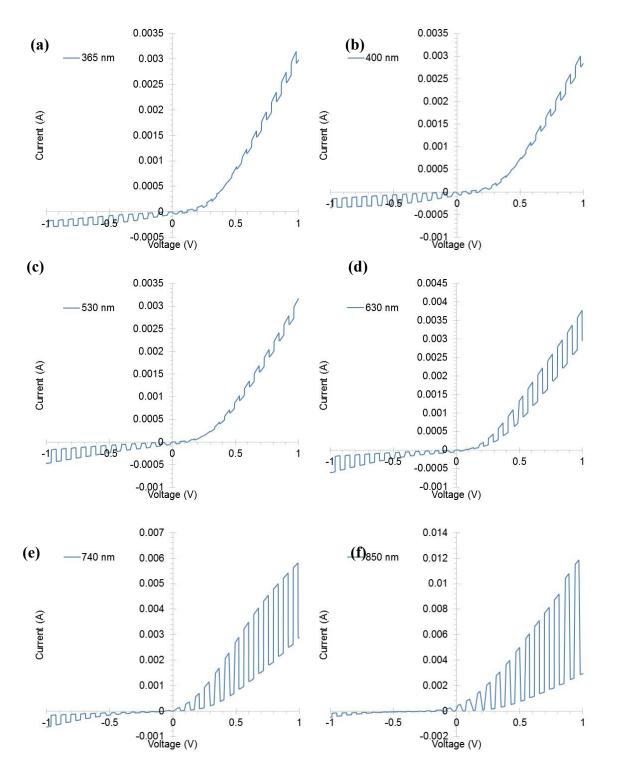
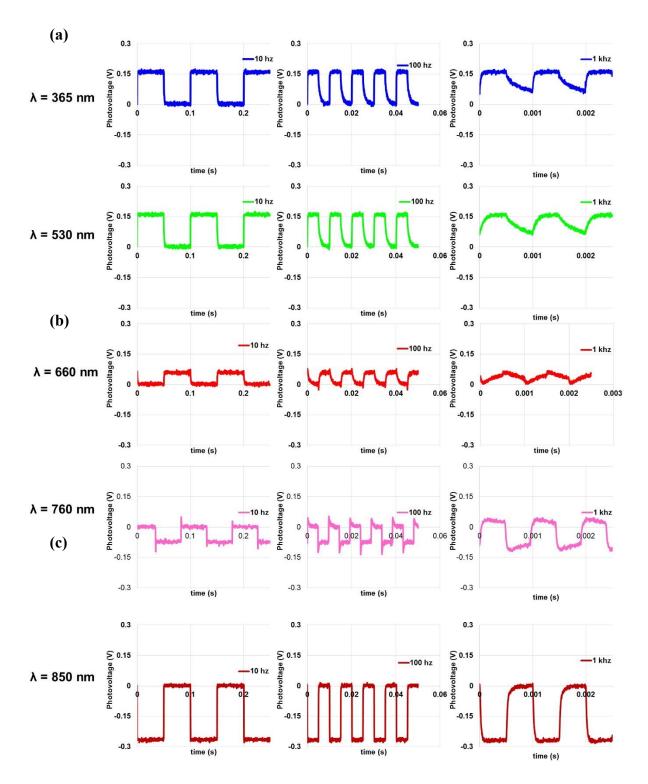



Fig. S2 Current-voltage characteristics of the device under the pulsed light illumination, (a) $\lambda = 365$ nm, (b) $\lambda = 400$ nm, (c) $\lambda = 530$ nm, (d) $\lambda = 630$ nm, (e) $\lambda = 740$ nm, and (f) $\lambda = 850$ nm. Scan direction is -1 V to 1 V, scan rate is 100 mV s⁻¹, scan interval is 1 mV, and light pulse frequency 1.3 Hz.

Fig. S3 Transient photovoltage plots of the device under various pulsed frequency (10 Hz, 100 Hz and 1 kHz) of light illumination, (a) $\lambda = 365$ nm, (b) $\lambda = 530$ nm, (c) $\lambda = 660$ nm, and (d) $\lambda = 760$ nm, and (e) $\lambda = 850$ nm.

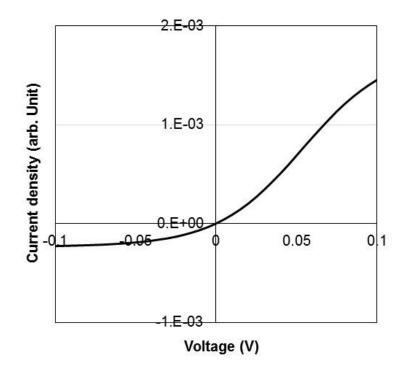


Fig. S4 Simulated J-V characteristic of the device under dark condition.

# of scan	Bulk Con. (cm-3)	Resistivity (Ω cm)	Mobility (cm ² V ⁻¹ s ⁻¹)
1	$1.84 imes 10^{17}$	65.08	5.19
2	$1.40 imes 10^{17}$	65.21	6.83
3	1.57×10^{17}	65.24	6.07
Average	$1.60 imes 10^{17}$	65.18	6.03

Table S1. Hall measurement of the 100 nm-thick SnS film.

Table S2. Responsivity (R*) and detectivity (D*) for wavelength of 400 nm and 800 nm. The photo-induced R_{ph}^* and D_{ph}^* values calculated using the relation $R_{ph}^* = |J_{ph} - J_{dark}|/P_{in}$ and $D_{ph}^* = R_{ph}^*/\sqrt{2qJ_{dark}}$, respectively, where J_{ph} is the photo current density, J_{dark} is the dark current density, P_{in} is the incident light intensity, and q is electron charge. Considering the pyroelectric effect, R_{ph+py}^* and D_{ph+py}^* can be formed by $R_{ph+py}^* = |J_{ph+py} - J_{dark}|/P_{in}$ and $D_{ph+py}^* = R_{ph+py}^*/\sqrt{2qJ_{dark}}$.

Wavelength (nm)	Light intensity (mW cm ⁻²)	Photo-induced		Photo+Pyro-induced	
		R* _{ph} (mA W ⁻¹)	D* _{ph} (Jones)	R* _{ph+py} (mA W ⁻¹)	D* _{ph+py} (Jones)
400 nm	10	34.45	1.97×10^{13}	66.25	3.79×10^{13}
800 nm	150	11.44	5.93×10^{12}	14.80	7.68×10^{12}