Electronic Supplementary Information

Effect of Donor Units in Methylated DPP-Based Polymers on Performance of Organic Field-Effect Transistors

Hee Su Kim,^{a,‡} Long Dang,^{b,‡} Yong-Young Noh,^{b*} and Do-Hoon Hwang^{a*}

^aDepartment of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Republic of Korea. E-mail: dohoonhwang@pusan.ac.kr

^bDepartment of Energy and Materials Engineering, Dongguk University 30 Pildong-ro, 1 gil, Jung-gu, Seoul 04620, Republic of Korea. E-mail: yynoh@dongguk.edu

‡H. S. Kim and L. Dang contributed equally.

Fig. S1 The TGA of the synthesized polymers.

Fig. S2 Cyclic voltammograms of the polymers (reduction part).

Fig. S3 The transfer and output characteristics of the OFETs based on PMDPP- BT, PMDPP-TVT, and PMDPP-TAT with and without the FeCl₃ interlayer at their optimized thermal annealing temperatures.

Polymer	Annealing Temperature (°C)	Lamellar Stacking		π-π Stacking		FWHM
		PMDPP50- BT	200	0.2413	26.03	1.689
PMDPP50- TVT	250	0.2591	24.25	1.759	3.57	17.4
PMDPP66- TAT	150	0.2254	27.87	1.740	3.61	17.4

 Table S1 Solid-state packing parameters for the polymer thin films.

Fig. S4 AFM height images of the (a) PMDPP50-BT, (b) PMDPP50-TVT, and c) PMDPP66-TAT films deposited at their optimal annealing temperatures. The scale bar is 500 nm.

The method to evaluate OFET parameters: field-effect mobility, μ , and threshold voltage, V_{th} , is the classical metal-oxide-semiconductor field-effect transistor (MOSFET) model. This method is described for the two extreme modes of operation above threshold, $|V_{\text{GS}}| > V_{\text{th}}|$, in equations (1) and (2). For linear mode, $|V_{\text{DS}}| < |V_{\text{GS}} - V_{\text{th}}|$,

$$I_{\rm D} = \mu_{\rm lin} c_{\rm ox} \frac{W}{L} \left[(V_{\rm GS} - V_{\rm th}) V_{\rm DS} - \frac{V_{\rm DS}^2}{2} \right], \tag{1}$$

and for saturation mode $|V_{\text{DS}}| > |V_{\text{GS}} - V_{\text{th}}|$,

$$I_{\rm D} = \mu_{\rm sat} c_{\rm ox} \frac{W}{2L} (V_{\rm GS} - V_{\rm th})^2, \qquad (2)$$

where V_{GS} is the gate voltage, V_{th} is the threshold voltage, I_D is the drain current, V_{DS} is the drain voltage, μ_{lin} and μ_{sat} are the linear and saturation mobility, respectively, W and L are the width and length of the transistor channel and c_{ox} is the capacitance per unit area.

 $I_{\rm D}$ shows an abrupt change in slope as a function of $V_{\rm GS}$, $I_{\rm D}$ ($I_{\rm D}^{1/2}$) is linear with $V_{\rm GS}$ in the linear (saturation) regime as defined in equations (1) and (2). This slope is used to calculate mobility and extrapolate the threshold voltage.

Y-function method (YFM): Y-function method (YFM) is considered as a fast and precise alternative method for obtaining Rc comparing with the traditional transmission line method (TLM). From the transfer characteristics of the OFETs, I_d in the linear regime can be described as in following equation:

$$I_d = \frac{W}{L} C_i (V_g - V_{Th}) \frac{\mu_0}{1 + \theta (V_g - V_{Th})} \times V_d \tag{1}$$

where C_i is the dielectric capacitance per unit area, and μ_o is the low-field mobility. θ is the mobility attenuation factor, which consists of the extrinsic factors caused by the surface roughness and phonon scattering (θ_o) and contact resistance [$\theta^* = (W/L)\mu_o C_i R_c$]. Assuming a constant R_c , the transconductance (g_m) can be expressed as

$$g_m = \frac{\delta I_d}{\delta V_g} = \frac{W}{L} C_i \frac{\mu_0}{\left[1 + \theta (V_g - V_{Th})\right]^2} \times V_d$$
⁽²⁾

 θ can be obtained by plotting $1/g_m^{1/2}$ versus V_g at a strong charge accumulation, where a linear behavior is obtained. Assuming that θ_o is negligible, R_c can be calculated, as summarized in Table. Note that the negative value of θ , is presumably due to the gate-field enhanced mobility, which is compensated for by the conventional mobility attenuation.