Supporting Information for

"Computational Realization of Dirac Nodal Point and Dirac Nodal Loop Fermions in Novel β-Graphyne Analogues"

Naga Venkateswara Rao Nulakani^{a,b} and Venkatesan Subramanian^{*,a,b} ^aInorganic & Physical Chemistry Department, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India. ^bAcademy of Scientific and Innovative Research (AcSIR), CSIR-CLRI Campus, Chennai 600020, India.

Corresponding Author

*E-mail: <u>subuchem@hotmail.com</u>; <u>subbu@clri.res.in</u>

Tel.: +91 44 24411630. **Fax**: +91 44 24911589.

Fig. S1 Geometrical features of butterfly-graphyne.

Table S1. The inequivalent of C atoms in β 4-, β 5-, β 6- and B-graphynes.

Table S2. Optimized bond lengths (Å) and bond angles (deg) of β 4-, β 5-, β 6- and Bgraphynes. The bond lengths and bond angles in or around the carbon polygons, at the central acetylenic linker and at the terminal bonds of the acetylenic linker are represented by the black, red and blue colored values, respectively (**C*i atoms are same as those of inequivalent Wyckoff positions of C atoms).

System	Bond lengths (Å)		Bond angles (deg)	
	C1-C1*	1.45	C1-C1-C1	90.00
β4-graphyne	C1-C2	1.35	C1-C1-C2	140.06
	C2-C2	1.25	C1-C2-C2	170.06
	C1-C2	1.50	H1-C1-H1	105.87
	C2-C3	1.40	H1-C1-C2	111.77
	C3-C3	1.46	C2-C1-C2	104.02
	C2-C4	1.39	C1-C2-C3	108.98
	C4-C5	1.23	C1-C2-C4	126.16
β5-graphyne	C3-C5	1.40	C3-C2-C4	124.86
	C1-H1	1.10	C2-C3-C3	109.01
			C2-C3-C5	124.48
			C3-C3-C5	126.51
			C2-C4-C5	175.94
			C4-C5-C3	174.71
	C1 C2	1 40		110.02
		1.40	HI-UI-UZ	118.93
		1.43	12-11-12	122.13
β6-graphyne		1.41	C1 - C2 - C2	118.93
	L3-L3	1.22	L1-L2-L3	120.48
	CI-HI	1.09	12 - 12 - 13	120.59
			12-63-63	179.41
	C1-C2	1.44	C2-C1-C2	108.78
	C2-C3	1.45	C2-C1-C6	125.61
	C3-C3	1.44	C1-C2-C3	107.80
	C2-C4	1.38	C1-C2-C4	125.57
	C4-C5	1.24	C3-C2-C4	126.63
B-graphyne	C3-C5	1.38	C2-C3-C3	107.81
	C1-C6	1.37	C2-C3-C5	121.81
	C6-C7	1.23	C3-C3-C5	130.38
	C7-C8	1.39	C2-C4-C5	179.30
			C4-C5-C3	170.86
			C1-C6-C7	180.00
			C6-C7-C8	180.00
			C7-C8-C7	120.00

Fig. S2 Total energy and temperature fluctuations of $\beta4$ -, $\beta5$ -, $\beta6$ - and B-graphynes at 300 and 500 K

Genaralized Synthetic Procedure

Dehydrotribenzo[12]annulenes, dehydrotribenzo[18]annulenes and perethynylated expanded radialenes, cyclo[12]carbon are considered as the potential candidates for the synthesis of small graphyne flakes using the most promising metal-catalyzed cross-coupling reactions, alkyne metathesis and templated synthesis techniques¹⁻⁶.

<u>β6-Graphyne</u>

In the same direction, intramolecular cross-coupling reactions of (1A) or (1B) and alkyne metathesis reaction of (1C) or (1D) eventually results the formation of small flakes of β 6-graphyne (1E) as presented in step I and step II.

Scheme-S1: Step I

 $R_1 = R_2 = t - Bu$

Step II

B-Graphyne

Similarly, tetrabromocyclopentadienone acetal (2A) catalyzed with appropriate acetylene unit in the presence of Pd(0)-Cu(I) leads to the tetraethynyl compounds (2B). The subsequent hydrolysis afforded the corresponding dienones (2C). Treatment of these dienones with appropriate alkynyllithium reagents gave the corresponding alcohols (2D), which were converted to chlorides or bromides (2E) by treatment with either $SOCl_2$ or $SOBr_2$.

Scheme-S2: Step I

Step II

The compound (**2E**) of step I in scheme 2 may serve as the precursor for the intramolecular cross-coupling reactions or alkyne metathesis reaction which may leads to the formation of small flakes of B-Graphyne as presented in step II.

<u>β5-Graphyne</u>

Scheme-S3:

The complete reduction of carbonyl group of compound (**2C**) in scheme 2 with a suitable reducing agent and fallowed by treatment with appropriate alkynyllithium reagent lead to the formation of compound (**3A**) as shown below. The compound (**3A**) may serve as the starting material for the synthesis of small patches of β 5-graphyne using promising metal-catalyzed cross-coupling reactions, alkyne metathesis and templated synthesis techniques.

<u>β5-Graphyne</u>

Scheme-S4:

Similar to the previous synthetic procedures, the acetylic scaffolds of carbon tetragon (**4A**) may serve as starting point for the synthesis of β 4-graphyne.

By removing the metal carbonyl unit using a proper reagent like (Trimethylamine N-Oxide, Me_3NO) and suitable metallic support, free standing monolayer of β 4-graphyne may be synthesized.

References:

- 1. G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, and D. Zhu, *Chem. Commun.*, 2010, **46**, 3256–3258.
- 2. J. Gao, J. Li, Y. Chen, Z. Zuo, Y. Li, H. Liu, and Y. Li, *Nano Energy*, 2018, **43**, 192–199.
- 3. Q. Li, Y. Li, Y. Chen, L. Wu, C. Yang, and X. Cui, *Carbon N. Y.*, 2018, **136**, 248–254.
- 4. U. H. F. Bunz, J. Organomet. Chem., 2003, 683, 269–287.
- 5. U. H. F. Bunz, Y. Rubin, and Y. Tobe, *Chem. Soc. Rev.*, 1999, **28**, 107–119.
- 6. M. M. Haley, *Pure Appl. Chem.*, 2008, **80**, 519–532.