## Organosilicon dimer of BTBT as a perspective semiconductor material for toxic gas detection with monolayer organic field-effect transistor

Askold A. Trul<sup>a</sup>, Alexey S. Sizov<sup>a</sup>, Victoria P. Chekusova<sup>a</sup>, Oleg V. Borshchev<sup>a</sup>, Elena V. Agina<sup>a</sup>, Maxim A. Shcherbina<sup>a</sup>, Artem V. Bakirov<sup>a</sup>, Sergey N. Chvalun<sup>a</sup>, Sergey A. Ponomarenko<sup>1a,b</sup>

 <sup>a</sup>Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences, 70 ul. Profsoyuznaya, 117393 Moscow, Russian Federation;
<sup>b</sup>Chemistry Department, Lomonosov Moscow State University, Leninskye Gory, 1, bldg.3, 119992, Moscow, Russian Federation;

## Contents

| 1. | Morphology investigations | 2 |
|----|---------------------------|---|
|    |                           |   |
| 2. | X-ray investigations      | 6 |
| 3. | Electrical measurements   | 6 |

<sup>&</sup>lt;sup>1</sup> ponomarenko@ispm.ru, phone 7 495 332-5858, fax 7 495 335-9000; www.ispm.ru

## 1. Morphology investigations



Figure S1. AFM image and height distribution for LB monolayer of quaterthiophene dimer **D2**-**Und-4T-Hex**.



Figure S2. AFM images of **D2-Und-BTBT-Hex** films prepared by spin-coating technique on (a) bare silica substrate (b) silica substrate modified by octyldimethylclorosilane (ODMS).



Figure S3. AFM images and height distributions of **D2-Und-BTBT-Hex** films prepared by spincoating technique at optimal spinning rates from the solutions with concentration of (a, b) 1 g/L, (c, d) 1.4 g/L, (e, f) 2 g/L.



Figure S4. AFM images of **D2-Und-4T-Hex** structures obtained by spin-coating technique from solutions with concentration of (a) 0.2 g/L, (b) 0.4 g/L, (c) 0.8 g/L, (d) 1 g/L.



Figure S5. AFM image of LB BTBT dimer films before (a) and after (b) solvent vapor annealing



Figure S6. AFM images of LB films prepared from D2-Und-BTBT-Hex at concentrations of (a) 0.5 g/L, (b) 1 g/L

## 2. X-ray investigations



Figure S7. Grazing incidence diffraction pattern for spin-coated monolayer film **D2-Und-BTBT-Hex**.



Figure S8. Typical transfer characteristics for (a)SC and (b) LB monolayer OFETs based on **D2**-**Und-BTBT-Hex**.



Figure S9. Typical transfer characteristics hysteresis loop of monolayer OFETs based on monolayer LS film of **D2-Und-BTBT-Hex.** Transfer curves hysteresis loop for OFETs fabricated by LB or SC techniques are somewhat the same.



Figure S10. Charge carrier mobility dependence of LS film of **D2-Und-BTBT-Hex** from the channel length.



Figure S11. Mobility distribution for twenty (a) LS and (b) SC monolayer OFETs based on BTBT dimer.



Figure S12. Transfer characteristics of spin-coated OFETs as prepared (dark blue), after SVA post-treatment (filled orange) and after a half-year storage (unfilled orange).