Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Enhanced thermoelectric performance of Sn-doped Cu₃SbS₄

Kan Chen,^{*a} Cono Di Paola,^b Baoli Du,^c Ruizhi Zhang,^a Savio Laricchia,^b Nicola Bonini,^b Cedric Weber,^b Isaac Abrahams,^d Haixue Yan^a and Mike Reece ^a

^aSchool of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK.

^bDepartment of Physics, King's College London, London WC2R 2LS, UK

^cSchool of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China.

^dSchool of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK

1. Representative TEM images of Sn-doped Cu₃SbS₄

Figure S1. Representative TEM images of Sn-doped Cu₃SbS₄ samples.

2. SPB Calculations

The single parabolic band (SPB) model is based on Boltzmann transport equation and the relaxation time approximation, which is widely used to in thermoelectric materials.¹ In the SPB model, the Seebeck coefficient (α), the Hall carrier concentration ($n_{\rm H}$), the

Hall mobility ($\mu_{\rm H}$), and the Lorenz number (*L*) can be written as Equation (1), (2), (3) and (4).

$$\alpha = \frac{k_B}{e} \left[\frac{(2+r)F_{1+r}(\eta)}{(1+r)F_r(\eta)} - \eta \right]$$
(1)

$$n_{\rm H} = \frac{8\pi (2k_B T m^*)^{3/2}}{3h^3} \frac{(1+r)^2 F_r^2(\eta)}{(1/2+2r)F_{2r-1/2}(\eta)}$$
(2)

$$\mu_{\rm H} = \mu_0 \frac{(1/2 + 2r)F_{2r-1/2}(\eta)}{(1+r)F_r(\eta)} \tag{3}$$

$$L = \left(\frac{k_B}{e}\right)^2 \left[\frac{(1+r)(3+r)F_r(\eta)F_{2+r}(\eta) - (2+r)^2 F_{r+1}^2(\eta)}{(1+r)^2 F_r^2(\eta)}\right]$$
(4)

Where $k_{\rm B}$ is the Boltzmann constant, *e* is the elementary charge, *r* is the scattering factor (In this work, the acoustic phonon scattering is assumed to be dominant for charge carrier transport, r = 0.), *h* is the Planck constant, m^* is the density-of-state effective mass, μ_0 is the mobility parameter, $F_i(\eta) = \int_0^\infty \frac{x^i dx}{1 + \exp(x - \eta)}$ is the Fermi integral and η is the reduced chemical potential. According to Equations (1) and (2), the Pisarenko line (α versus *n*) was plotted by adjusting m^* at room temperature to fit the experimental data. The powder factor ($PF = \alpha^2 \sigma = \alpha^2 n_{\rm H} e \mu_{\rm H}$) dependence of carrier concentration at 573 K was calculated using Equations (1), (2) and (3) and μ_0 of 8 cm²V⁻¹s⁻¹ was used in the calculation. *L* was calculated based on measured α by using Equation (1) and (3), and the results are showing in Figure S2.

Figure S2. Calculated Lorenz number in the $Cu_3Sb_{1-x}Sn_xS_4$ system as a function of temperature using SPB model with the assumption of acoustic phonon scattering.

Reference.

1. D. M. Rowe, *Thermoelectrics and its energy harvesting*, CRC Press, Boca Raton, FL, 2012.