Supporting Information

Photoluminescence of Sn²⁺-I⁻-mixed molecular perovskites

Guang-Meng Fan,^a Chao Shi,^{*a,b} Liang Qiao,^a Hao-Jie Li^a and Heng-Yun Ye^b

^a Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, Jiangsu, China

^b Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Nanchang 330013, Jiangxi, China

Experimental section

Synthesis of starting materials. MDABCO (MDABCO = N-methyl-N'diazabicyclo(2,2,2)octonium) slats. MDABCO slats were prepared by evaporation of a solution containing stoichiometric MDABCO iodide and the HBF₄ or HReO₄ in air. The materials were heating at around 333 K for one day to remove yellow I₂ impurities. The Mdabco iodide was prepared by reaction of dabco and CH₃I in toluene. **Crystal growth.** MDABCO(NH₄)(BF₄)₃ (I) or MDABCO(NH₄)(ReO₄)₃ (II) was obtained as crystal by evaporation of a solution containing stoichiometric MDABCO(BF₄)₂ or MDABCO(ReO₄)₂ and NH₄BF₄ or NH₄ReO₄ at around 333 K. The purity of the bulk phases was verified by PXRD (Fig. S1).

Mixing of Sn²⁺. The crystals of Sn²⁺-mixed compound were grown as the same method as that for non-mixed compound, except that SnCl₂ and H₃PO₂ were used. The used volume amounts of H₃PO₂ solution (50%) is about one sixth of the whole. The use of H₃PO₂ is to avoid of the oxidation of Sn²⁺. To avoid contamination of the impurities, the crystals were separated before the drying of the solution in the evaporation.

Figure S1. Powder X-ray diffraction pattern of (a) I and (b) mixing of SnI_x^{y-} measured at room temperature, verifying the purity of the bulk.

Figure S2. DSC curves of (a) I and (b) II measured in the heating-cooling cycle.

Figure S3. The structure of the $NH_4(BF_4)_6$ octahedron in (MDABCO)(NH_4)(BF_4)₃ (I), showing the tilting geometry from that of the regular one.

Figure S4. The cage-like structure of (MDABCO)(NH₄)(BF₄)₃ (I), showing the hydrogen bond interactions between the A-site organic cation the X-site BF_4^- anion. The pink dashed lines indicate the hydrogen bonds. Hydrogen atoms and partial fluorine atoms are omitted for clarity.

Figure S5. The packing view of $(MDABCO)(NH_4)(BF_4)_3$ (I), showing centrosymmetric structure with the head-to-head and tail-to-tail arrangement of the organic cation.

Figure S6. The real part of complex dielectric permittivity (ε') of **I** as a function of temperature at the frequency range from 500 Hz to 1 MHz.

Figure S7. The real part of complex dielectric permittivity (ε ') of **II** as a function of temperature at (a) 1 MHz and (b) at the frequency range from 500 Hz to 1 MHz.

Figure S8. Emission spectra of **I**, confirming that **I** do not emit light under UV excitation.

Figure S9. Emission spectra of $I(I^-)$, confirming that $I(I^-)$ do not emit light under UV excitation.

Figure S10. Emission spectra of $I(Sn^{2+})$, confirming that $I(Sn^{2+})$ do not emit light under UV excitation.

je i				
	293 K	408 K		
Formula	$C_7H_{20}B_3F_{12}N_3$	$C_7H_{20}B_3F_{12}N_3$		
$M_{ m w}$	406.69	406.69		
Crystal system	Trigonal	cubic		
Space group	<i>R</i> -3 <i>c</i>	Pm-3m		

Table S1. Crystal data and structure refinements for I.

<i>a</i> [Å]	10.213(2)	7.4699(6)
<i>b</i> [Å]	10.213(2)	7.4699(6)
<i>c</i> [Å]	53.387(9)	7.4699(6)
α [°]	90	90
β [°]	90	90
γ [°]	120	90
<i>V</i> [Å ³]	4823(2)	416.82(10)
Ζ	12	1
$D_{ m calc}$ / g·cm ⁻³	1.680	1.620
$\mu [\mathrm{mm}^{-1}]$	0.196	0.189
Reflections collected unique	6151 / 1216	666 / 144
R _{int}	0.0572	0.0453
$R_1^{[a]}, wR_2^{[b]} (I > 2\sigma(I))$	0.1254, 0.3255	0.2214, 0.6111
$R_1^{[a]}, w R_2^{[b]}$ (all data)	0.1470, 0.3425	0.2710, 0.6333
GOF	1.129	2.454
$\Delta \rho^{[c]} [e \cdot Å^{-3}]$	0.514 / -0.480	0.107 / -0.097

[a] $R_1 = \Sigma ||F_0| - |F_c|| / |F_0|$. [b] $wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^2)^2]^{1/2}$. [c] Maximum and minimum residual electron density.

	293 K	403 K		
Formula	$C_7H_{16}N_3O_{12}Re_3$	$C_7H_{16}N_3O_{12}Re_3$		
$M_{ m w}$	892.86	892.86		
Crystal system	monoclinic	cubic		
Space group	$P2_{1}/c$	Pm-3m		
<i>a</i> [Å]	10.3825(8)	7.699(4)		
<i>b</i> [Å]	11.2230(5)	7.699(4)		
<i>c</i> [Å]	15.1415(9)	7.699(4)		
α [°]	90	90		
β[°]	90.205(6)	90		
γ [°]	90	90		
V[Å ³]	1764.32(19)	456.4(7)		
Ζ	4	1		
$D_{\rm calc}$ / g·cm ⁻³	3.361	3.088		
$\mu [\mathrm{mm}^{-1}]$	20.595	19.893		

Table S2. Crystal data and structure refinements for II.

Reflections collected unique	12840 / 4043	1677 / 139
R _{int}	0.0634	0.0500
$R_1^{[a]}, wR_2^{[b]} (I > 2\sigma(I))$	0.0506, 0.1161	0.0512, 0.1350
$R_1^{[a]}, wR_2^{[b]}$ (all data)	0.0581, 0.1212	0.0531, 0.1362
GOF	1.155	1.342
$\Delta \rho^{[c]} [e \cdot Å^{-3}]$	2.003 / -2.617	0.987 / -0.800

[a] $R_1 = \Sigma ||F_0| - |F_c|| / |F_0|$. [b] $wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^2)^2]^{1/2}$. [c] Maximum and minimum residual electron density.