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The energetic stability can be determined by the definitions as follows.

Firstly, the adsorption energy of molecule (E”') on single-layer GeS

covered with water molecules is computed by Eq.(1).

mol __
E ad E mol+water E water E molecule (1)
Here, E,,,.....> E.uer> E,onene @r€ the total energies of molecule and water

co-adsorbed, water adsorbed on GeS nanosheet, and free molecule placed
in a large cubic box, respectively. Similarly, the adsorption energy of
oxygen atom on pristine GeS monolayer is calculated by Eq.(2).

E

Oad

= EO—ad -E

pristine 05 * E02 (2)
The formation energy of S-vacancy (E;, ) and oxygen atom doping in

the S-vacancy (E, ) on GeS is defined as Eq.(3) and Eq.(4), respectively,

ES v = Evaac + ES _Epristille (3)
EO.mb = EO*SMb + ES - Ep,ﬁistine - 0.5 * EvO2 (4)

E

S—vac

whereE, ,, E

pristine 9

and E, , denote the total energies of O-

adsorbed, pristine, single S-vacancy, and O-doped in S-vacancy GeS

nanosheets, respectively. E, and E represents the energies of free O,

molecule and one S atom in free Sg molecule,' respectively.

Besides, the recovery time (;) upon gas molecule adsorption is
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*

] E
defined with 7=0" exp(ﬁ) ,>3 on the basis of the conventional transition
B

state theory. Here, T denotes the temperature, Kz the Boltzmann’ constant,

o the attempt frequency (1013 s!) and £* the desorption energy barrier of

gas molecule (approximated as the absolute of adsorption energy).
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Table S1 Calculated lattice parameters of unit cell (a, b), average length of Ge—S

(dge-s) bonds, and band-gap energy (Eg,) of GeS monolayer. (* denotes the

calculations at the HSEOQ6 level).

Monolayer GeS a,b(A) dge-s(A) Egp (€V)
This work 4.38,3.67 2415,2471 1.604,2.166"

Ref. 4 433,3.67 248 2.34"
Ref. 5 445,3.64 2.42,2.46 -

Ref. 6 448, 3.62 - 1.23

Ref. 7 4.40, 3.69 - -

Ref. 8 3.66,450 242,248 1.58,2.42%
Ref. 9 3.64,4.50 2.43,2.46 1.73, 2.43"

Table S2 Calculated adsorption energies (E,.qs) for NH3, SO, and NO, on monolayer

GeS at different coverages, along with that obtained without vdW.

E.q5(eV) i Adsorbate Concentration
Super cel NH; SO, NO, Molecules/nm?
3x3 -0.357  -0.442 -0.788 0.691
4x4 -0.367  -0.400 -0.791 0.389
5%5 -0.277  -0.446 -0.798 0.249
Without vdW
3x3 -0.199  -0.198 -0.638 0.691
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Fig. S1 A schematic illustration of the structure of pristine GeS monolayer and the

adsorption sites of molecules on it.
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Fig. S2 The most stable adsorption configurations (a, b), computated adsorption

energies (c¢) and the Bader charge transfer (d) for various molecules on GeS

monolayer.
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Fig. S3 Results for molecular dynamics simulations performed at 300 K for 5 ps. (a)
Total energy fluctuations with time; (b, c, d) the final adsorption configurations for

SO,, NH3 and NO, on GeS monolayer achieved after 5 ps, respectively.
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Fig. S4 The band structures of NH3; and SO, absorbed on GeS with the various

compressive strains.
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Fig. S5 The adsorption height of NO, adsorbed on GeS varying with the
respectively.
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Fig. S6 An illustration of the favorable configurations for NHj;, SO, and NO,

adsorbed on monolayer GeS covered by water molecules ranging from one to three.
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Fig. S7 Calculated adsorption energies varying with the external E-field for NH3, SO,

and NO, adsorbed on monolayer GeS covered by one water molecule, respectively.

. "> ’S-;'\ >
wxil > 3

U t—-J “—o LWJ-T

\z\g *i‘z\»;x 3R

‘J’U L UL lﬂ_zl

& \ >~’\’ OS>
(0)
ST
‘L“{_ﬂ_, Q‘Tﬂ J

NH, NO,

S9



Fig. S8 Adsorption configurations of NH3, SO, and NO, on defective GeS nanosheets,

(a) O-adsorbed GeS, (b) O-doped GeS, (c) S-vacancy GeS.
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Fig. S9 The band structures and total DOS for NH;, SO,, and NO, adsorbed on O-
adsorbed (a-c) and O-doped (d-f) GeS sheets, respectively. The Fermi energy (dashed
line) is set at zero. In the NO, cases, the left and right panels are spin-up and spin-

down states, respectively.

Video S1: A movie simulated by AIMD for NH; adsorbed on GeS at 300 K for 5 ps.
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