Supporting Information

Few-Layered α-MoTe₂ Schottky Junction for High Sensitive Chemical-Vapour Sensor

Iman Shackery[‡],^a Atiye Pezeshki[‡],^{bc} Jae Young Park[‡],^a Umadevi Palanivel,^{a,d} Hyeok Jae Kwon,^b Hyong Seo Yoon,^a Seongil Im^b, Jin Soo Cho^{*d} and S. C. Jun^{**a}

a School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea,

b Institute of Physics and Applied Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea, * E-mail: gte573k@gmail.com ** E-mail: scj@yonsei.ac.kr

c Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, Taiwan 300, R.O.C.

d Department of Computer Engineering, Gachon University, Gyeonggi-do 461-701, Korea

KEYWORDS: α-MoTe₂, Schottky diode, gas sensing, two-dimensional materials

Figure S1. (a) Magnified third cycle in Figure 4b, showing the SD responses under exposure to 210-ppb NO₂. The response time of NO₂ was ~15 s. A forward-bias voltage of -5 V was applied across the device. (b, c) Magnified second cycle in Figure 4d, showing the response and recovery behaviour of the SD under exposure to 140-ppb NH₃. At a forward bias of -5 V, the response time was ~1 s and the recovery time was ~2 s.

Figure S2. Energy-band diagram of the α -MoTe₂ SD in three different conditions: (a) before gas exposure; (b) under NO₂ gas exposure, showing the reduction of the Fermi level; and (c) under NH₃ gas exposure, indicating the increase of the Schottky-barrier height compared with the pre-exposure condition.

Figure S3. (a) Raman spectra of $MoTe_2$ before (blue) and after (red) gas sensing in NO₂ and NH₃. The Raman spectra confirms the stability of the MoTe₂ sensors after sensing. (b) The I–V curves of the SD under irradiation from red, green and blue light-emitting diodes (LEDs). The SD is insensitive to the visible light.

Figure S4. Magnified first cycles in (a) Figure 6a and (b) Figure 6b, showing the relative resistance change of the MoTe₂ FET under exposure to 70-ppb NO₂ and 70-ppb NH₃, respectively.

Figure S5. Partial Density of States (PDOS) of the MoTe₂ with adsorbed gas molecules in (a) Pt surface and (b) Ti. Note that the Fermi level is fitted at 0 eV. Colour code used for the PDOS is Mo-d (magenta), Te-s (blue), N-p (green) and O-p (Dark grey) respectively.

Table S1.

Ref.	2D material	Type of device	Chemical	Gas concentration	Response time	ΔR/R or ΔG/G	Note
This study	МоТе2 _	Schottky diode	NO ₂	70 ppb	~ 15 s	13%	Room temperature
			NH ₃	70 ppb	~ 1 s	112%	
		FET	NO ₂	70 ppb	~50 s	22 %	
			NH ₃	70 ppb	~55 s	61%	
1	BP	FET	NO ₂	5 ppb	280 s	2.9 % ¹	Room temperature
2	Graphene/MoS ₂	Heterostructure	NO ₂	1.2 ppm	~10 min	3 %	150 °C
			NH ₃	5 ppm	~10 min	1.5 %	150 °C
3	h-BN Capped MoS ₂	FET	ethanol, acetonitrile, toluene, chloroform, methanol	No data	100-400 s	~500%	150 °C
4	MoS ₂ -Decorated TiO2 nanotube	p-n heterojunction	ethanol	100 ppm	~20 s	400 %	150 °C
5	Graphene/Silicon Heterojunction ²	Schottky Diode	NO ₂	20 ppm	10 min	75%	Room temperature
			NH ₃	50 ppm	6 min	60%	Room temperature
6	MoTe ₂ Gate bias (-60 and 20 V)	FET	NO ₂	100-1000 ppb	~ 7 min	100%	Room temperature
			NH ₃	2-100 ppm	~7 min	32%	Room temperature

¹ In this report, the authors reported relative conductance change instead of relative resistance change. ² The relative conductance change is reported.

Metal	Gas Molecule	E _{Ads} (eV)	Bond length (Å)	Charge Transfer e
Pt	$NH_3(B)$	-0.150	$1.02 (1.02)^1$	0.068
	NH ₃ (H)	-0.149	1.02	0.067
	NO ₂ (B)	*		
	NO ₂ (H)	-0.153	1.25 (1.21)	0.070
			1.24	
Ti	NH ₃ (B)	-0.124	1.02 (1.02)	0.071
	NH ₃ (H)	-0.124	1.02	0.071
	NO ₂ (B)	-0.129	1.25 (1.21)	0.074
			1.26	
	NO ₂ (H)	-0.129	1.25	0.074
			1.26	

Table S2: Adsorption energy (eV), Bond length Å, and charge transfer (e) value for the studied complex.

¹ Denotes the monomer value *Structure not converged

1. Abbas, A. N.; Liu, B.; Chen, L.; Ma, Y.; Cong, S.; Aroonyadet, N.; Köpf, M.; Nilges, T.; Zhou, C., Black phosphorus gas sensors. *ACS nano* **2015**, *9* (5), 5618-5624.

2. Cho, B.; Yoon, J.; Lim, S. K.; Kim, A. R.; Kim, D.-H.; Park, S.-G.; Kwon, J.-D.; Lee, Y.-J.; Lee, K.-H.; Lee, B. H., Chemical sensing of 2d graphene/MoS2 heterostructure device. *ACS applied materials & interfaces* **2015**, *7* (30), 16775-16780.

3. Liu, G.; Rumyantsev, S.; Jiang, C.; Shur, M.; Balandin, A., Selective Gas Sensing With \$ h \$-BN Capped MoS 2 Heterostructure Thin-Film Transistors. *IEEE Electron Device Letters* **2015**, *36* (11), 1202-1204.

4. Zhao, P.; Tang, Y.; Mao, J.; Chen, Y.; Song, H.; Wang, J.; Song, Y.; Liang, Y.; Zhang, X., One-Dimensional MoS 2-Decorated TiO 2 nanotube gas sensors for efficient alcohol sensing. *Journal of Alloys and Compounds* **2016**, *674*, 252-258.

5. Singh, A.; Uddin, M.; Sudarshan, T.; Koley, G., Tunable Reverse - Biased Graphene/Silicon Heterojunction Schottky Diode Sensor. *Small* **2014**, *10* (8), 1555-1565.

6. Feng, Z.; Xie, Y.; Chen, J.; Yu, Y.; Zheng, S.; Zhang, R.; Li, Q.; Chen, X.; Sun, C.; Zhang, H., Highly sensitive MoTe2 chemical sensor with fast recovery rate through gate biasing. *2D Materials* **2017**, *4* (2), 025018.