Supplementary Information

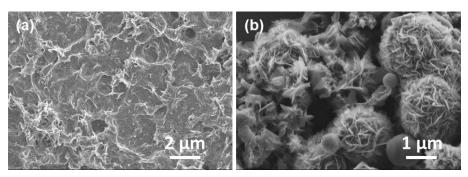
Vertically Distributed VO₂ Nanosheets on Hollow Spheres with Enhanced Thermochromic Properties

Huiyan Xu^{a,b}, Zhengfei Dai^a, Chen Wang^a, Kewei Xu^{a,c}, Fei Ma^{a,b,*}, Paul K Chu^{b,*}

^a State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong

University, Xi'an 710049, Shaanxi, China

^b Department of Physics and Materials Science, City University of Hong Kong, Tat


Chee Avenue, Kowloon, Hong Kong, China

^c Department of Physics and Opt-electronic Engineering, Xi'an University of Arts and Science, Xi'an 710065, Shaanxi, China

Electronic mail: mafei@mail.xjtu.edu.cn (F. Ma)

paul.chu@cityu.edu.hk (P. K. Chu)

Fig. S1

Fig. S1 SEM images of the samples with different volume percentage of C_2H_5OH (a) 0%, (b) 100%.

^{*} Authors to whom correspondence should be addressed.

Fig. S2

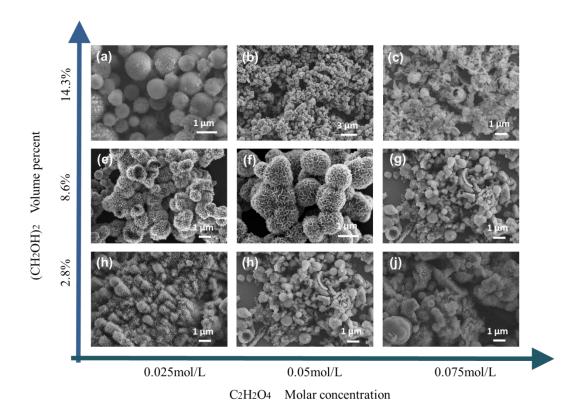


Fig. S2 SEM images of the samples with different concentration of $(CH_2OH)_2$ (EG) and $C_2H_2O_4$.

Fig. S3

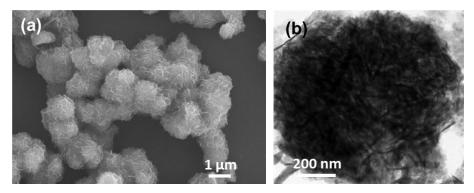


Fig. S3 SEM image (a) and TEM image (b) of the samples with aggregated nanosheets

Fig. S4

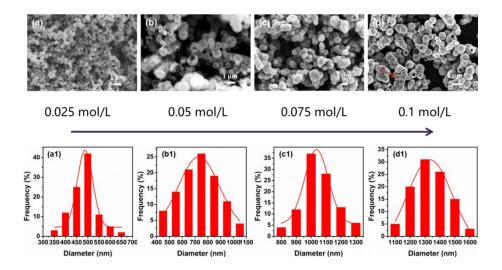


Fig. S4 (a-e) SEM images of VO_2 hollow microsphere grown in different precursor concentration. (a1-d1) The distribution of sphere diameter.

Fig. S5

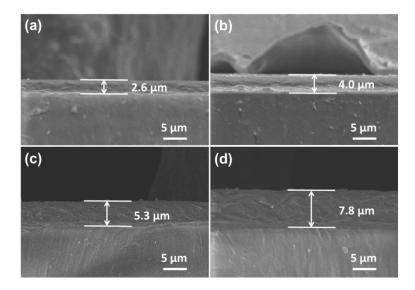


Fig. S5 SEM images of the cross-sections of the films with different thickness.

Fig. S6

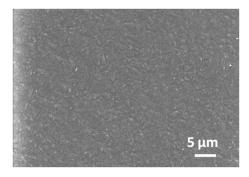


Fig. S6 SEM image of nanosheets-based film.

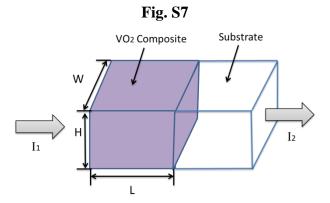


Fig. S7 Structral model for composites of VO_2 and substrate with the refractive index equal to 1.5. The thickness of the model (L) is 3 μ m.

To simulate the transmittance of VO₂ composite, COMSOL Multiphysics software based finite element analysis (FEA) is used. Fig. S7 shows the structural model for composite film. The VO₂ hollow or solid spheres are embedded in a media with the refractive index equal to 1.5. The incident light waves are plane waves traveling perpendicular to the VO₂ composite film, as shown in Fig. S7. In our simulations, all material property parameters were taken from published literatures. The refractive indexs ($\tilde{n} = n + ik$) of VO₂ are taken from experimental spectroscopic data reported by Li. A constant of 1.51 is used for the glass substrate.