Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Supplementary Materials

Surface-Step-Terrace Tuned Second-Order Nonlinear Optical

Coefficients of Epitaxial Ferroelectric BaTiO₃ Films

Yuan Zhang,†^a Quan Guo,†^b Shuaizhi Zheng,^a Xiangli Zhong,^{*a} Gaokuo Zhong,^a Dongwen

Zhang,^b Chuanlai Ren,^a Congbing Tan,^a Zhihui Lu,^b Yi Zhang,^a Yong Tang,^a Jinbin Wang^a and

Jianmin Yuan*b

^aSchool of Materials Science and Engineering, Xiangtan University, Hunan 411105, China;

E-mail: xlzhong@xtu.edu.cn

^bDepartment of Physics, College of Science, National University of Defense Technology, Hunan

410073, China;

E-mail: jmyuan@nudt.edu.cn

[†] These authors contributed equally to this work.

The AFM and PFM images were characterized by commercially available AFM platform (Asylum Research (MFP-3D-infinity) and Bruker (Dimension Icon AFM)), and the crystalline structure were characterized via X-ray Diffraction (Rigaku-D/Max 2500 and BEDE D1 system). The cross-sectional TEM image were carried out by high-resolution transmission electron microscopy (TEM, JEM 2100F).

FIG. S1 Cross-section TEM image of BTO film grown on 0° miscut substrate.

Cross-sectional TEM image of BTO film grown on 0° miscut substrate are shown in FIG. S1. It can be found that the thickness of BTO film is about 20 nm.

FIG. S2 Typical θ -2 θ XRD patterns of BTO films grown on various (001) STO miscut substrates. The typical θ -2 θ XRD patterns of BTO films grown on various (001) STO miscut

substrates are shown in FIG. S2. The peak at 41.8° corresponds to the STO substrate (002) K_{β} reflection.

The sharp (00*l*) diffraction peaks suggest that the films have good single-crystal quality and excellent epitaxial nature, and the phase structure of the films is tetragonal.

FIG. S3 RSM patterns of (002) reflections from BTO film grown on (a) 0°, (b) 0.2°, (c) 1° and (d) 2° miscut substrates.

The RSM patterns of (002) reflections from BTO film grown on 0°, 0.2°, 1°, and 2° miscut substrates are shown in FIG. S3. As can be seen, the BTO films grown on different miscut angles present different value of Q_z , which indicates different lattice parameter *c* in the four BTO samples. Therefore, the BTO samples exhibit different strain states induced by surface-step-terrace.

FIG. S4 Atomic force microscope images of BTO films grown on (a) 0° , (b) 0.2° , (c) 1° and (d) 2° miscut substrates.

The morphology of BTO surfaces was studied by atomic force microscope. The results of 5 μ m×5 μ m area scan are shown in FIG. S4(a)-(d). As can be seen, the roughness of BTO films is less than 0.5 nm and the terraces from the substrate are visible, which indicates a layer-by-layer mode of the film growth.

FIG. S5 Out-of-plane and in-plane PFM image of BTO film grown on 2° miscut substrate.

The out-of-plane (OP) and in-plane (IP) PFM images of BTO film grown on 2° miscut substrate are shown in FIG. S5(a) and (b), respectively. The uniform contrast of OP PFM image indicates the polarization components along *c* direction are the same. No signal above the noise level can be obtained from the IP PFM image, which means that there is no IP component of the polarization.¹ Therefore, we can conclude that the domain structure of BTO film grown on 2° miscut substrate is monodomain. The PFM results from other samples show similar phenomenon.

Reference:

1 Y. H. Chu, L. W. Martin, M. B. Holcomb and R Ramesh, Mater. Today, 2007, 10, 16-23.