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Table S1 Molecule optimized structure, FMO distributions and energy levels, and
energy band gaps of carbon-, silicon-, and germanium-bridged molecules.

Fig. S1 Cyclic voltammograms of DPS, DPG, and ferrocene (inset).

Fig. S2 EQE-J plot, TTA and SPA mode for the red devices.

Fig. S3 *H NMR spectrum of 1 (400 MHz, Chloroform-d).

Fig. S4 *H NMR spectrum of 2 (400 MHz, Chloroform-d).

Fig. S5 *H NMR spectrum of 3 (400 MHz, Chloroform-d).

Fig. S6 'H NMR spectrum of DPS (400 MHz, Chloroform-d).

Fig. S7 *3C NMR spectrum of DPS (151 MHz, Chloroform-d).
Fig. S8 *H NMR spectrum of DPG (600 MHz, Chloroform-d).
Fig. S9 'H NMR spectrum of DPG (151 MHz, Chloroform-d).



General Information
All chemicals and reagents were used as received from commercial sources without

further purification. THF was purified by PURE SOLV (Innovative Technology)
purification system. *H NMR and 3C NMR spectra were recorded in chloroform-d
(CDClz) on a Bruker 400 and Agilent DD2-600 MHz NMR spectrometer at room
temperature. Matrix-Assisted Laser Desorption/ lonization Time of Flight Mass
Spectrometry (MALDI-TOF-MS) was measured with a BRUKER ultrafleXtreme
MALDI-TOF/TOF. UV-vis absorption spectra were recorded on Cary 60 spectrometer
(Agilent Technologies). PL spectra and phosphorescent spectra were recorded on a
Hitachi F-4600 fluorescence spectrophotometer. Differential scanning calorimetry
(DSC) was performed on a TA DSC 2010 unit at a heating rate of 10 °C min under
nitrogen. The glass transition temperatures (Tg) were determined from the second
heating scan. Thermogravimetric analysis (TGA) was performed on a TA SDT 2960
instrument at a heating rate of 10 °C min! under nitrogen. Temperature at 5% weight
loss was used as the decomposition temperature (Tq). Cyclic voltammetry (CV) was
carried out on a CHI600 voltammetric analyzer at room temperature with
ferrocenium-ferrocene (Fc*/Fc) as the internal standard. The oxidative scans were
performed using 0.1 M n-BusNPFs (TBAPFs) in deaerated DMF as the supporting
electrolyte. A conventional three-electrode configuration consisting of a Pt-wire
counter electrode, an Ag/AgClI reference electrode, and a platinum working electrode
was used. The cyclic voltammograms were measured at a scan rate of 100 mV s™.
DFT calculations were performed using B3LYP/6-31 G(d) basis set using Gaussian
09.

Device Fabrication and Characterization

The OLEDs were fabricated on the indium-tin oxide (ITO) coated transparent glass
substrates, with the ITO conductive layer having a thickness of ca. 100 nm and a sheet
resistance of ca. 30 Q per-square. The active area of each device is 0.09 cm?2. The ITO
glasses were ultrasonically cleaned by ethanol, acetone and deionized water for 10
min subsequently, and then exposed to UV-ozone for 15 min. All of the organic

materials and metal layers under a vacuum of ca. 10 Torr. The deposition rate was



controlled at 2 A s for HAT-CN, 0.2-0.4 A s for Lig, 1-2 A s for other organic
layers and 5-8 A s for Al anode. The EL spectra, CIE coordinates, J-V-L curves, CE,
and PE of the devices were measured with a programmable spectra scan photometer
(PHOTO RESEARCH, PR 655) and a constant current source meter (KEITHLEY

2400) at room temperature.



Table S1. Molecule optimized structure, FMO distributions and energy levels, and

energy band gaps of carbon-, silicon-, and germanium-bridged molecules.
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Fig. S1 Cyclic voltammograms of DPS, DPG, and ferrocene (inset).



Triplet-triplet annihilation (TTA) mode (Equation S1)*
TTA _Jo AN 0
() = 2x ((1+8L) — 1) xnlys L
ngoe: the quantum efficiency without TTA, approximated as the maximum EQE;

Jo: the current density when EQE is a half of the maximum value.

Singlet-polaron annihilation (SPA) mode (Equation $2)2

1
nior() = — X N2k S2

1
1+(%)1+l

ngQE: the quantum efficiency without SPA, approximated as the maximum EQE;

Jo: the current density when EQE is a half of the maximum value.

[: the fitting parameter.
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Fig. S2 EQE-J plot, TTA and SPA modes for the red devices.
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Fig. S3 'H NMR spectrum of 1 (400 MHz, Chloroform-d).
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Fig. S4 'H NMR spectrum of 2 (400 MHz, Chloroform-d).
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Fig. S6 *H NMR spectrum of DPS (400 MHz, Chloroform-d).
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Fig. S7 *C NMR spectrum of DPS (151 MHz, Chloroform-d).
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Fig. S8 'H NMR spectrum of DPG (600 MHz, Chloroform-d).
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Fig. S9 'H NMR spectrum of DPG (151 MHz, Chloroform-d).



