Supporting information to accompany:

[Cu(P^P)(N^N)][PF₆] compounds with bis(phosphane) and 6-alkoxy, 6-alkylthio, 6-phenyloxy and 6-phenylthiosubstituted 2,2'-bipyridine ligands for light-emitting electrochemical cells

Murat Alkan-Zambada,^{*a*} Sarah Keller,^{*a*} Laura Martinez-Sarti,^{*b*} Alessandro Prescimone,^{*a*} José M. Junquera-Hernández,^{*b*} Edwin C. Constable,^{*a*} Henk J. Bolink,^{*b*} Michele Sessolo,*^{*b*} Enrique Ortí*^{*b*} and Catherine E. Housecroft*^{*a*}

^{*a*}Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, CH-4058 Basel, Switzerland; email: <u>catherine.housecroft@unibas.ch</u> ^{*b*}Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático José Beltrán 2, E-46980 Paterna (Valencia), Spain;

General method for N^N ligand synthesis

e-mail: enrique.orti@uv.es, henk.bolink@uv.es

6-Bromo-2,2'-bipyridine (1.0 eq, Table S1) and NaOR or NaSR (R = Me, Et, Ph) (2 eq, Table S1) were dissolved in 2 mL solvent (Table S1) under N₂. The mixture was heated in a microwave reactor under the conditions shown in Table S1, and the product was purified as detailed in Table S1. Each of MeObpy, EtObpy, PhObpy, MeSbpy and EtSbpy was obtained as a colourless oil; PhSbpy was isolated as a white solid (yields are given in Table S1). Spectroscopic data for MeObpy, PhObpy, MeSbpy, EtSbpy and PhSbpy have previously been reported.^{1,2,3,4}

Product	Brbpy / mg,	Amount of NaOR or NaSR	Solvent	Microwave	Yield / %				
	mmol			conditions					
MeObpy	300, 1.28	5.12 mL (0.5 M), 2.56 mmol	DMF	4h, 120 °C	77 ^a				
EtObpy	300, 1.28	186 mg (96% assay), 2.62 mmol	DMF	5h, 130 °C	64 ^{a,b}				
PhObpy	104, 0.44	150 mg, 0.88 mmol	NMP	4h, 180 °C, 1 bar	48°				
MeSbpy	200, 0.85	126 mg (95% assay), 1.7 mmol	NMP	4h, 180 °C, 1 bar	64°				
EtSbpy	100, 0.43	79 mg (90% assay), 0.85 mmol	NMP	4h, 180 °C, 1 bar	20 ^d				
PhSbpy	100, 0.43	125 mg (90% assay), 0.85 mmol	NMP	4h, 180 °C, 1 bar	57°				

Table S1 Reaction conditions and purifications for N^N ligand preparation

^aFor product purification, the reaction mixture was added to water (25 mL) and extracted with toluene (3×25 mL). The combined organic fractions were washed with water (3×25 mL) and extracted with aq. H₂SO₄ (20%, 4×20 mL). Aqueous NH₃ (16%) was added to the combined aqueous layers until a white precipitate formed. The alkaline solution was extracted with CH₂Cl₂ (3×25 mL) and the combined organic fractions were dried over MgSO₄. Solvent was evaporated under reduced pressure. ^bThe product was further purified by column chromatography (silica, *n*-pentane:EtOAc 10:1, 10% TEA).

^cThe reaction mixture was added to water (25 mL) and extracted with toluene (3×25 mL). The combined organic fractions were washed with water (3×25 mL) and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography (alumina, *n*-pentane:EtOAc 20:1).

^dThe crude reaction mixture was purified by preparative TLC (silica, n-pentane:EtOAc 1:5) followed by column chromatography (alumina, *n*-pentane:EtOAc 20:1).

¹H NMR (500 MHz, CD₂Cl₂) δ /ppm 1.43 (t, J = 7.04 Hz, 3H, H^{Et}), 4.48 (q, J = 7.04 Hz, 2H, H^{Et}), 6.73 (dd, J = 8.21, 0.80 Hz, 1H, H^{B5}), 7.29 (ddd, J = 7.50, 4.79, 1.22 Hz, 1H, H^{A5}), 7.70 (dd, J = 8.21, 7.46 Hz, 1H, H^{B4}), 7.81 (ddd, J = 8.00, 7.50, 1.82 Hz, 1H, H^{A4}), 8.00 (dd, J = 7.46, 0.80 Hz, 1H, H^{B3}), 8.37 (m, 1H, H^{A3}), 8.63 (ddd, J = 4.79, 1.82, 0.95 Hz, 1H, H^{A6}). ¹³C {¹H} NMR (126 MHz, CD₂Cl₂) δ /ppm 15.0 (C^{Et}), 62.1 (C^{Et}), 111.7 (C^{B5}), 113.9 (C^{B3}), 121.3 (C^{A3}), 124.1 (C^{A5}), 137.3 (C^{A4}), 139.9 (C^{B4}), 149.6 (C^{A6}), 154.0 (C^{B2}), 156.6 (C^{A2}), 163.9 (C^{B6}). ESI MS: *m/z* 222.96 [L+Na]⁺ (base peak, calc. 223.08).

Syntheses and characterization of copper complexes

[Cu(POP)(MeObpy)][PF₆]. A solution of [Cu(MeCN)₄][PF₆] (93.2 mg, 0.25 mmol) and POP (135 mg, 0.25 mmol) in CH₂Cl₂ (10 mL) was stirred at room temperature for 30 min. A solution of MeObpy (47 mg, 0.25 mmol) in CH₂Cl₂ (10 mL) was added and the mixture was stirred at room temperature for 1 h. The solution was filtered and the solvent was removed under reduced pressure. The crude product was redissolved in CH₂Cl₂ (2 mL) and layered with Et₂O (10 mL). Yellow crystals were formed and were separated by filtration and washed with *n*-hexane. Solvent residues were removed under reduced pressure. [Cu(POP)(MeObpy)][PF₆] was isolated as a yellow solid (212 mg, 0.23 mmol, 91%). ¹H NMR (500 MHz, acetone-d₆): δ/ppm 3.90 (s, 3H, H^{OMe}), 6.77–6.85 (m, 6H, H^{C3+D2/D2'}), 7.04–7.09 (m, 2H, H^{C4}), 7.12–7.18 (m, 7H, H^{B5+C6+D3/D3'}), 7.26 (ddd, J = 7.6, 5.1, 1.1 Hz, 1H, H^{A5}), 7.30 (t, J = 7.4 Hz, 2H, H^{D4/D4'}), 7.34-7.43 (m, 8H, H^{C5+D4/D4'+D3/D3'}), 7.46-7.53 (m, 4H, H^{D2/D2'}), 8.08 (m, 1H, H^{A4}), 8.14 (m, 1H, H^{B4}), 8.16 (dd, J = 7.7, 1.3 Hz, 1H, H^{B3}), 8.23 (m, 1H, H^{A6}), 8.53 (m, 1H, H^{A3}). ¹³C{¹H} NMR (126 MHz, acetone- d_6): δ /ppm 56.4 (C^{OMe}) , 108.5 (C^{B5}) , 116.4 (C^{B3}) , 121.5 (C^{C6}) , 123.5 (C^{A3}) , 125.2 $(t, J_{PC} = 14)$

Hz, C²), 125.9 (t, $J_{PC} = 2$ Hz, C⁴), 126.6 (C^{A5}), 129.4 (t, $J_{PC} = 5$ Hz, C^{D3/D3'}), 129.6 (t, $J_{PC} = 5$ Hz, C^{D3/D3'}), 130.4 (C^{D4/D4'}), 131.2 (C^{D4/D4'}), 131.9 (C^{D1/D1'} only from HMBC), 132.7 (C^{D1/D1'} only from HMBC), 132.9 (C^{C5}), 133.1 (t, $J_{PC} = 8$ Hz, C^{D2/D2'}), 134.9 (C^{C3}), 135.0 (t, $J_{PC} = 8$ Hz, C^{D2/D2'}), 139.5 (C^{A4}), 143.1 (C^{B4}), 150.1 (C^{A6}), 151.7 (C^{B2}), 152.7 (C^{A2}), 159.4 (t, $J_{PC} = 6$ Hz, C^{C1}), 164.7 (C^{B6}). ³¹P{¹H} NMR (162 MHz, acetone- d_6): δ /ppm -11.4 (br. FWHM = 350 Hz), -144.2 (sept, $J_{PF} = 707$ Hz). ESI MS: m/z 787.0 [M-PF₆]⁺ (base peak, calc. 787.2). Found C 60.44, H 4.56, N 2.90; C₄₇H₃₈CuF₆N₂O₂P₃ requires 60.49, H 4.10, N 3.00%.

[Cu(POP)(EtObpy)][PF₆]. The method was as for [Cu(POP)(MeObpy)][PF₆] starting with [Cu(MeCN)₄][PF₆] (93.2 mg, 0.25 mmol), POP (135 mg, 0.25 mmol) and EtObpy (50 mg, 0.25 mmol). [Cu(POP)(EtObpy)][PF₆] was isolated as a yellow solid (213 mg, 0.23 mmol, 90%). ¹H NMR (500 MHz, acetone- d_6): δ /ppm 1.29 (t, J = 7.1 Hz, 3H, H^{OEt}), 4.26 (q, J = 7.1 Hz, 2H, H^{OEt}), 6.77–6.83 (m, 4H, H^{D2/D2'}), 6.86 (m, 2H, H^{C3}), 7.06–7.11 (m, 4H, H^{C4+C6}), 7.12–7.16 (m, 5H, $H^{B5+D3/D3'}$), 7.19 (ddd, J = 7.6, 5.2, 1.1 Hz, 1H, H^{A5}), 7.29 (m, 2H, $H^{D4/D4'}$), 7.33-7.38 (m, 6H, H^{C5+D3/D3'}), 7.40-7.45 (m, 2H, H^{D4/D4'}), 7.55-7.61 (m, 4H, $H^{D2/D2'}$), 8.05 (m, 1H, H^{A4}), 8.11 (m, 1H, H^{B4}), 8.13 (dd, J = 7.7, 1.3 Hz, 1H, H^{B3}), 8.17 (m, 1H, H^{A6}), 8.51 (m, 1H, H^{A3}). ¹³C{¹H} NMR (126 MHz, acetoned₆): δ/ppm 14.7 (C^{OEt}), 65.9 (C^{OEt}), 109.2 (C^{B5}), 116.3 (C^{B3}), 121.4 (C^{C6}), 123.4 (C^{A3}), 125.3 (t, $J_{PC} = 14$ Hz, C^{C2}), 125.9 (t, $J_{PC} = 2$ Hz, C^{C4}), 126.4 (C^{A5}), 129.4 (t, $J_{PC} = 5$ Hz, $C^{D3/D3'}$), 129.6 (t, $J_{PC} = 5$ Hz, $C^{D3/D3'}$), 130.3 ($C^{D4/D4'}$), 131.4 (C^{D4/D4'}), 131.7 (t, $J_{PC} = 16$ Hz, C^{D1/D1'}), 132.7 (t, $J_{PC} = 16$ Hz, C^{D1/D1'}), 132.9 (C^{C5}), 133.0 (t, $J_{PC} = 8$ Hz, C^{D2/D2'}), 134.8 (C^{C3}), 135.5 (t, $J_{PC} = 9$ Hz, C^{D2/D2'}), 139.4 (C^{A4}), 142.9 (C^{B4}), 149.9 (C^{A6}), 151.9 (C^{B2}), 152.8 (C^{A2}), 159.2 (t, $J_{PC} =$ 6 Hz, C^{C1}), 164.1 (C^{B6}). ³¹P{¹H} NMR (162 MHz, acetone- d_6): δ /ppm -11.0 (br. FWHM = 310 Hz), -144.2 (sept, $J_{PF} = 708$ Hz). ESI MS: m/z 801.0 $[M-PF_6]^+$ (base peak, calc. 801.2). Found C 59.62, H 4.54, N 3.08; C₄₈H₄₀CuF₆N₂O₂P₃·H₂O requires 59.72, H 4.39, N 2.90%.

[Cu(POP)(PhObpy)][PF₆]. The method was as for [Cu(POP)(MeObpy)][PF₆] starting with [Cu(MeCN)₄][PF₆] (93.2 mg, 0.25 mmol), POP (135 mg, 0.25 mmol) and PhObpy (62 mg, 0.25 mmol). [Cu(POP)(PhObpy)][PF₆] was isolated as a yellow solid (217 mg, 22 mmol, 87%). ¹H NMR (500 MHz, acetone- d_6): δ/ppm 6.67–6.74 (m, 5H, H^{B5+E2+C3}), 6.83–6.88 (m, 4H, H^{D2/D2'}), 7.02 (m, 2H, H^{C4}), 7.11 (m, 2H, H^{C6}), 7.18-7.26 (m, 8H, H^{D3+D3'}), 7.27 (ddd,

J = 7.6, 5.1, 1.1 Hz, 1H, H^{A5}), 7.31–7.39 (m, 7H, H^{E4+C5+D4+D4'}), 7.45 (m, 2H, H^{E3}), 7.48–7.54 (m, 4H, H^{D2/D2'}), 8.12 (m, 2H, H^{A4+B4}), 8.26 (m, 1H, H^{A6}), 8.34 (dd, 1H, *J* = 7.7, 0.6 Hz, H^{B3}), 8.63 (m, 1H, H^{A3}). ¹³C {¹H} NMR (126 MHz, acetone-*d*₆): δ /ppm 111.6 (C^{B5}), 117.9 (C^{B3}), 121.55 (C^{C6}), 121.6 (C^{E2}), 123.7 (C^{A3}), 124.9 (t, *J*_{PC} = 15 Hz, C^{C2}), 125.9 (t, *J*_{PC} = 2 Hz, C^{C4}), 126.8 (C^{A5}), 127.2 (C^{E4}), 129.5 (t, *J*_{PC} = 4 Hz, C^{D3/D3'}), 129.6 (t, *J*_{PC} = 5 Hz, C^{D3/D3'}), 130.6 (C^{D4/D4'}), 131.3 (C^{D4/D4'}), 131.5 (C^{E3}), 131.7 (t, *J*_{PC} = 16 Hz, C^{D1/D1'}), 132.9 (C^{C5}), 133.3 (t, *J*_{PC} = 8 Hz, C^{D2/D2'}), 134.9 (C^{C3}), 135.1 (t, *J*_{PC} = 8 Hz, C^{D2/D2'}), 139.6 (C^{A4}), 143.3 (C^{B4}), 150.2 (C^{A6}), 152.25 (C^{B2}), 152.3 (C^{A2}), 153.7 (C^{E1}), 159.2 (t, *J*_{PC} = 6 Hz, C^{C1}), 164.3 (C^{B6}). ³¹P {¹H} NMR (162 MHz, acetone-*d*₆): δ /ppm –11.7 (br. FWHM = 225 Hz), -144.2 (sept, *J*_{PF} = 707 Hz). ESI MS: *m*/z 849.1 [M–PF₆]⁺ (base peak, calc. 849.2). Found C 60.46, H 4.65, N 2.93; C₅₂H₄₀CuF₆N₂O₂P₃·2H₂O requires C 60.56, H 4.30, N 2.72%.

[Cu(xantphos)(MeObpy)][PF₆]. A CH_2Cl_2 (10 mL) solution of [Cu(MeCN)₄][PF₆] (93.2 mg, 0.25 mmol) and a solution of xantphos (145 mg, 0.25 mmol) and MeObpy (47 mg, 0.25 mmol) in CH₂Cl₂ (10 mL) were stirred at ambient temperature for 30 min. The solutions were then combined and the mixture was stirred at room temperature for 1 h. The solution was filtered and the solvent was removed under reduced pressure. The crude product was dissolved in CH₂Cl₂ (2 mL) and layered with Et₂O (10 mL). The yellow crystals that formed were removed by filtration and washed with *n*-hexane. Solvent residues removed under reduced were pressure. [Cu(xantphos)(MeObpy)][PF₆] was isolated as a yellow solid (148 mg, 0.15 mmol, 61%). ¹H NMR (500 MHz, acetone- d_6): δ /ppm 1.75 (s, 3H, H^{a/a'}), 1.83 (s, 3H, H^{a/a'}), 3.40 (s, 3H, H^{OMe}), 6.64 (m, 2H, H^{C3}), 7.02–7.09 (m, 8H, H^{D2+D2'}), 7.14-7.24 (m, 9H, H^{B5+D3+D3'}), 7.26 (m, 2H, H^{C4}), 7.30-7.37 (m, 4H, H^{D4+D4'}), 7.44 (m, 1H, H^{A5}), 7.83 (dd, J = 7.8, 1.5 Hz, 2H, H^{C5}), 8.10 (td, J = 7.9, 1.6 Hz, 1H, H^{A4}), 8.19–8.24 (m, 2H, H^{B3+B4}), 8.36 (ddd, J = 5.1, 1.7, 0.9 Hz, 1H, H^{A6}), 8.54 (dt, J = 8.2, 1.1 Hz, 1H, H^{A3}). ¹³C{¹H} NMR (126 MHz, acetone- d_6): δ/ppm 27.7 (Ca/a'), 29.0 (Ca/a'), 36.9 (Cxantphos-bridge), 56.1 (COMe), 108.6 (CB5), 116.4 (C^{B3}), 121.5 (t, J_{PC} = 14 Hz, C^{C2}), 123.9 (C^{A3}), 125.9 (t, J_{PC} = 2 Hz, C^{C4}), 127.1 (C^{A5}), 128.2 (C^{C5}), 129.5 (t, $J_{PC} = 5$ Hz, C^{D3/D3'}), 129.7 (t, $J_{PC} = 5$ Hz, $C^{D3/D3'}$), 130.75 ($C^{D4/D4'}$), 130.8 ($C^{D4/D4'}$), 131.7 (C^{C3}), 132.8 (t, $J_{PC} = 17$ Hz, $C^{D1/D1'}$), 133.1 (t, $J_{PC} = 17$ Hz, $C^{D1/D1'}$), 133.7 (t, $J_{PC} = 8$ Hz, $C^{D2/D2'}$), 133.8 (t,

 $J_{PC} = 8$ Hz, $C^{D2/D2'}$), 134.8 (C^{C6}), 139.7 (C^{A4}), 143.4 (C^{B4}), 149.9 (C^{A6}), 151.5 (C^{B2}), 152.7 (C^{A2}), 156.1 (t, $J_{PC} = 6$ Hz, C^{C1}), 165.1 (C^{B6}). ³¹P{¹H} NMR (162 MHz, acetone- d_6): δ /ppm –12.6 (br. FWHM = 270 Hz), –144.2 (sept, $J_{PF} = 707$ Hz). ESI MS: m/z 827.0 [M–PF₆]⁺ (base peak, calc. 827.2). Found C 61.92, H 4.81, N 3.17; $C_{50}H_{42}CuF_6N_2O_2P_3$ requires C 61.70, H 4.35, N 2.88%.

[Cu(xantphos)(EtObpy)][PF₆]. The method for was as [Cu(xantphos)(MeObpy)][PF₆] starting with [Cu(MeCN)₄][PF₆] (93.2 mg, 0.25 mmol), xantphos (145 mg, 0.25 mmol) and EtObpy (50 mg, 0.25 mmol). $[Cu(xantphos)(EtObpy)][PF_6]$ was isolated as a yellow solid (239 mg, 0.24) mmol, 97%). ¹H NMR (500 MHz, acetone- d_6): δ /ppm 0.76 (t, J = 7.1 Hz, 3H, H^{OEt}), 1.72 (s, 3H, $H^{a/a'}$), 1.82 (s, 3H, $H^{a/a'}$), 3.84 (q, J = 7.1 Hz, 2H, H^{OEt}), 6.71 (m, 2H, H^{C3}), 7.04–7.14 (m, 8H, H^{D2+D2'}), 7.15–7.20 (m, 5H, H^{B5+D3/D3'}), 7.23-7.29 (m, 6H, H^{C4+D3/D3'}), 7.30-7.34 (m, 4H, H^{D4+D4'}), 7.42 (m, 1H, H^{A5}), 7.84 (dd, J = 7.2, 1.4 Hz, 2H, H^{C5}), 8.07 (td, J = 8.0, 1.6 Hz, 1H, H^{A4}), 8.14 (m, 1H, H^{B3}), 8.19 (m, 1H, H^{B4}), 8.31 (m, 1H, H^{A6}), 8.54 (dt, J = 8.2, 1.1 Hz, 1H, H^{A3}). ¹³C{¹H} NMR (126 MHz, acetone- d_6): δ /ppm 13.9 (C^{OEt}), 27.5 (C^{a/a'}), 29.4 (Ca/a'), 36.9 (Cxantphos-bridge), 65.2 (COEt), 109.4 (CB5), 116.2 (CB3), 121.6 (t, $J_{PC} = 14 \text{ Hz}, C^{C2}$, 123.7 (C^{A3}), 125.9 (t, $J_{PC} = 2 \text{ Hz}, C^{C4}$), 127.0 (C^{A5}), 128.3 (C^{C5}), 129.5 (t, J_{PC} = 5 Hz, C^{D3/D3'}), 129.8 (t, J_{PC} = 5 Hz, C^{D3/D3'}), 130.7 $(C^{D4/D4'})$, 130.9 $(C^{D4/D4'})$, 131.7 (C^{C3}) , 132.8 (t, $J_{PC} = 17$ Hz, $C^{D1/D1'}$), 133.1 (t, $J_{PC} = 16$ Hz, $C^{D1/D1'}$), 133.7 (t, $J_{PC} = 8$ Hz, $C^{D2/D2'}$), 133.75 (t, $J_{PC} = 8$ Hz, C^{D2/D2'}), 135.0 (C^{C6}), 139.7 (C^{A4}), 143.2 (C^{B4}), 149.7 (C^{A6}), 151.6 (C^{B2}), 152.8 (C^{A2}), 156.1 (t, $J_{PC} = 6$ Hz, C^{C1}), 165.2 (C^{B6}). ³¹P{¹H} NMR (162 MHz, acetone- d_6): δ /ppm -13.0 (br. FWHM = 183 Hz), -144.2 (sept, $J_{PF} = 707$ Hz). ESI MS: m/z 841.1 [M-PF₆]⁺ (base peak, calc. 841.2). Found C 61.91, H 4.98, N 3.19; C₅₁H₄₄CuF₆N₂O₂P₃ requires C 62.04, H 4.49, N 2.84%.

[Cu(xantphos)(PhObpy)][PF₆]. The method was as for [Cu(xantphos)(MeObpy)][PF₆] starting with [Cu(MeCN)₄][PF₆] (93.2 mg, 0.25 mmol), xantphos (145 mg, 0.25 mmol) and PhObpy (62 mg, 0.25 mmol). [Cu(xantphos)(PhObpy)][PF₆] was isolated as a yellow solid (254 mg, 0.25 mmol, 98%). ¹H NMR (500 MHz, acetone- d_6): δ /ppm 1.46 (s, 3H, H^{a/a'}), 1.48 (s, 3H, H^{a/a'}), 6.04 (m, 2H, H^{E2}), 6.58 (dd, J = 8.3, 0.6 Hz, 1H, H^{B5}), 6.68 (m, 2H, H^{C3}), 6.93–6.98 (m, 4H, H^{D2/D2'}), 7.10–7.15 (m, 4H, H^{D3/D3'}), 7.18–7.25 (m, 9H, H^{E3+E4+C4+D2/D2'}), 7.25–7.32 (m, 6H, H^{D3/D3'+D4/D4'}), 7.38 (m, 2H, H^{D4/D4'}), 7.53 (dd, J = 7.8, 1.5 Hz, 2H, H^{C5}), 7.58 (m, 1H, H^{A5}), 8.13 (m, 1H, H^{A4})

overlapping with 8.15 (m, 1H, H^{B4}), 8.33 (dd, J = 7.8, 0.6 Hz, 1H, H^{B3}), 8.56 (dt, J = 8.2, 1.1 Hz, 1H, H^{A3}), 8.80 (d, J = 5.0 Hz, 1H, H^{A6}). ¹³C{¹H} NMR (126 MHz, acetone- d_6): δ /ppm 24.9 (C^{a/a'}), 30.9 (C^{a/a'}), 36.6 (C^{xantphos-bridge}), 111.4 (C^{B5}), 117.7 (C^{B3}), 121.3 (t, $J_{PC} = 14$ Hz, C^{C2}), 121.5 (C^{E2}), 123.9 (C^{A3}), 125.7 (t, $J_{PC} = 2$ Hz, C^{C4}), 126.9 (C^{E4}), 127.5 (C^{A5}), 128.1 (C^{C5}), 129.6 (t, $J_{PC} = 5$ Hz, C^{D3/D3'}), 129.8 (t, $J_{PC} = 5$ Hz, C^{D3/D3'}), 130.8 (C^{D4/D4'}), 130.8 (C^{D4/D4'}), 131.0 (C^{E3}), 131.3 (C^{C3}), 132.9 (t, $J_{PC} = 16$ Hz, C^{D1/D1'}), 133.0 (t, $J_{PC} = 18$ Hz, C^{D1/D1'}), 133.6 (t, $J_{PC} = 8$ Hz, C^{D2/D2'}), 133.8 (t, $J_{PC} = 8$ Hz, C^{D2/D2'}), 134.8 (C^{C6}), 139.7 (C^{A4}), 143.6 (C^{B4}), 150.3 (C^{A6}), 151.9 (C^{B2}), 152.2 (C^{A2}), 153.1 (C^{E1}), 156.0 (t, $J_{PC} = 6$ Hz, C^{C1}), 164.8 (C^{B6}). ³¹P{¹H} NMR (162 MHz, acetone- d_6): δ /ppm -12.8 (br. FWHM = 240 Hz), -144.2 (sept, $J_{PF} = 707$ Hz). ESI MS: m/z 889.1 [M–PF₆]⁺ (base peak, calc. 889.2). Found C 63.70, H 4.53, N 2.97; C₅₅H₄₄CuF₆N₂O₂P₃ requires C 63.80, H 4.28, N 2.71%.

[Cu(POP)(MeSbpy)][PF₆]. The method was as for [Cu(POP)(MeObpy)][PF₆] starting with [Cu(MeCN)₄][PF₆] (93.2 mg, 0.25 mmol), POP (135 mg, 0.25 mmol) and MeSbpy (51 mg, 0.25 mmol). [Cu(POP)(MeSbpy)][PF₆] was isolated as a yellow solid (213 mg, 0.23 mmol, 90%). ¹H NMR (500 MHz, acetone- d_6): δ /ppm 2.45 (s, 3H, H^{SMe}), 6.84 (m, 4H, H^{D2/D2'}), 6.91 (m, 2H, H^{C3}), 7.08–7.17 (m, 9H, H^{A5+D3/D3'+C4+C6}), 7.30 (t, J = 7.5 Hz, 2H, H^{D4/D4'}), 7.33–7.45 (overlapping signals, 9H, H^{D3/D3'+D4/D4'+C5+B5}), 7.59 (m, 4H, H^{D2/D2'}), 8.02-8.08 (overlapping, 2H, H^{A4+B4}), 8.14 (ddt, J = 4.4, 1.7, 0.8 Hz, 1H, H^{A6}), 8.26 (dd, J = 7.9, 0.8 Hz, 1H, H^{B3}), 8.53 (dd, J = 8.2, 1.0 Hz, 1H, H^{A3}). ¹³C{¹H} NMR (126 MHz, acetone-d₆): δ/ppm 15.7 (C^{SMe}), 118.9 (C^{B3}), 121.1 (C^{C6}), 122.3 (C^{B5}), 123.5 (C^{A3}), 125.6 (t, $J_{PC} = 14$ Hz, C^{C2}), 126.0 (t, $J_{PC} = 2$ Hz, C^{C4}), 126.5 (C^{A5}), 129.3 (t, $J_{PC} = 4$ Hz, C^{D3/D3'}), 129.6 (t, $J_{PC} = 5$ Hz, C^{D3/D3'}), 130.3 (C^{D4/D4'}), 131.3 (C^{D4/D4'}), 131.6 (C^{D1/D1'} from HMBC), 132.4 (C^{D1/D1'} from HMBC), 133.0 (C^{C5}), 133.1 (t, $J_{PC} = 8$ Hz, $C^{D2/D2'}$), 134.8 (C^{C3}), 135.5 (t, $J_{PC} =$ 8 Hz, C^{D2/D2'}), 139.5 (C^{A4}), 140.0 (C^{B4}), 149.9 (C^{A6}), 152.7 (C^{A2/B2}), 152.75 $(C^{A2/B2})$, 158.8 (t, $J_{PC} = 6$ Hz, C^{C1}), 163.6(C^{B6}). ³¹P{¹H} NMR (162 MHz, acetone- d_6): δ /ppm -11.2 (br. FWHM = 260 Hz), -144.2 (sept, $J_{PF} = 707$ Hz). ESI MS: *m*/*z* 803.0 [M–PF₆]⁺ (base peak, calc. 803.2). Found C 59.07, H 4.25, N 2.83; C₄₇H₃₈CuF₆N₂OP₃S requires C 59.46, H 4.03, N 2.95%.

 $[Cu(POP)(EtSbpy)][PF_6]$. The method was as for $[Cu(POP)(MeObpy)][PF_6]$ starting with $[Cu(MeCN)_4][PF_6]$ (93.2 mg, 0.25 mmol), POP (135 mg, 0.25 mmol) and EtSbpy (54 mg, 0.25 mmol). $[Cu(POP)(EtSbpy)][PF_6]$ was

isolated as a yellow solid (190 mg, 0.20 mmol, 79%). ¹H NMR (500 MHz, acetone- d_6): δ /ppm 1.13 (t, J = 7.4 Hz, 3H, H^{SEt}), 2.98 (q, J = 7.4 Hz, 2H, H^{SEt}), 6.77-6.91 (overlapping m, 6H, H^{D2/D2'+C3}), 7.09-7.17 (overlapping m, 9H, H^{C4+C6+D3/D3'+A5}), 7.27–7.43 (m, 9H, H^{C5+B5+D3/D3'+D4+D4'}), 7.56 (m, 4H, H^{D2/D2'}), 8.00-8.07 (overlapping m, 2H, H^{A4+B4}), 8.17 (ddd, J = 5.2, 1.7, 0.9 Hz, 1H, H^{A6}), 8.26 (dd, J = 8.0, 0.8 Hz, 1H, H^{B3}), 8.51 (m, 1H, H^{A3}). ¹³C{¹H} NMR (126 MHz, acetone-d₆): δ/ppm 13.5 (C^{SEt}), 27.1 (C^{SEt}), 118.9 (C^{B3}), 120.9 (C^{C6}) , 122.7 (C^{B5}) , 123.5 (C^{A3}) , 125.4 $(t, J_{PC} = 14 \text{ Hz}, C^{C2})$, 126.0 (C^{C4}) , 126.4 (C^{A5}), 129.3 (t, $J_{PC} = 4$ Hz, C^{D3/D3'}), 129.5 (t, $J_{PC} = 5$ Hz, C^{D3/D3'}), 130.4 (C^{D4/D4'}), 131.3 (C^{D4/D4'}), 131.7 (t, $J_{PC} = 16$ Hz, C^{D1/D1'}), 132.4 (t, $J_{PC} = 16$ Hz, $C^{D1/D1'}$), 133.0 (C^{C5}), 133.2 (t, $J_{PC} = 8$ Hz, $C^{D2/D2'}$), 134.9 (C^{C3}), 135.4 (t, $J_{PC} = 8$ Hz, C^{D2/D2'}), 139.5 (C^{A4}), 139.7 (C^{B4}), 149.9 (C^{A6}), 152.7 (C^{A2/B2}), 152.9 $(C^{A2/B2})$, 158.8 (t, $J_{PC} = 6.0$ Hz, C^{C1}), 162.7 (C^{B6}). ³¹P{¹H} NMR (162 MHz, acetone- d_6): δ /ppm -11.4 (br. FWHM = 280 Hz), -144.2 (sept, J_{PF} = 707 Hz). ESI MS: m/z 817.0 [M-PF₆]⁺ (base peak, calc. 817.2). Found C 59.15, H 4.40, N 3.02; C₄₈H₄₀CuF₆N₂OP₃S·H₂O requires 58.75, H 4.31, N 2.85%.

[Cu(POP)(PhSbpy)][PF₆]. The method was as for [Cu(POP)(MeObpy)][PF₆] starting with [Cu(MeCN)₄][PF₆] (93.2 mg, 0.25 mmol), POP (135 mg, 0.25 mmol) and PhSbpy (66 mg, 0.25 mmol). [Cu(POP)(PhSbpy)][PF₆] was isolated as a yellow solid (192 mg, 0.19 mmol, 76%). ¹H NMR (500 MHz, acetone- d_6): δ /ppm 6.75 (dd, J = 8.1, 0.8 Hz, 1H, H^{B5}), 6.88–6.92 (m, 6H, H^{C3+D2/D2'}), 7.12 (m, 4H, H^{C4+C6}), 7.17-7.22 (overlapping m, 7H, H^{A5+E2+D3/D3'}), 7.32-7.38 (m, 8H, H^{C5+D3/D3'+D4/D4'}), 7.41 (m, 2H, H^{D4/D4'}), 7.49 (m, 2H, H^{E3}), 7.55 (m, 1H, H^{E4}), 7.63 (m, 4H, H^{D2/D2'}), 7.90 (m, 1H, H^{B4}), 8.06 (m, 1H, H^{A4}), 8.20 (m, 1H, H^{A6}), 8.30 (dd, 1H, J = 7.9, 0.8 Hz, H^{B3}), 8.54 (m, 1H, H^{A3}). ¹³C{¹H} NMR (126 MHz, acetone-d₆): δ/ppm 119.5 (C^{B3}), 121.2 (C^{C6}), 123.4 (C^{B5}), 123.7 (C^{A3}), 125.5 (t, J_{PC} = 15 Hz, C^{C2}), 126.1 (t, J_{PC} = 2 Hz, C^{C4}), 126.6 (C^{A5}), 129.5 (t, $J_{PC} = 5$ Hz, $C^{D3/D3'}$), 129.7 (t, $J_{PC} = 5$ Hz, $C^{D3/D3'}$), 129.8 (C^{E1}), 130.5 (C^{C5}), 131.3 (C^{E3}), 131.4 (C^{D4/D4'}), 131.45 (C^{E4}), 131.5 (t, J_{PC} = 16 Hz, C^{D1/D1'}), 132.4 (t, $J_{PC} = 18$ Hz, $C^{D1/D1'}$), 133.1 ($C^{D4/D4'}$), 133.3 (t, $J_{PC} = 8$ Hz, $C^{D2/D2'}$), 134.9 (C^{C3}) , 135.5 (t, $J_{PC} = 8$ Hz, $C^{D2/D2'}$), 136.0 (C^{E2}), 139.6 (C^{A4}), 140.1 (C^{B4}), 150.0 (C^{A6}), 152.5 (C^{A2}), 153.1 (C^{B2}), 158.8 (t, $J_{PC} = 6$ Hz, C^{C1}), 163.9 (C^{B6}). ³¹P{¹H} NMR (162 MHz, acetone- d_6): δ /ppm -11.6 (br. FWHM = 194 Hz), -144.2 (sept, $J_{PF} = 707$ Hz). ESI MS: m/z 865.1 [M-PF₆]⁺ (base peak, calc. 865.2).

Found C 61.35, H 4.66, N 2.99; C₅₂H₄₀CuF₆N₂OP₃S·H₂O requires C 60.67, H 4.11, N 2.72%.

[Cu(xantphos)(MeSbpy)][PF₆]. The method was as for [Cu(xantphos)(MeObpy)][PF₆] starting with [Cu(MeCN)₄][PF₆] (93.2 mg, 0.25 mmol), xantphos (145 mg, 0.25 mmol) and MeSbpy (51 mg, 0.25 mmol). [Cu(xantphos)(MeSbpy)][PF₆] was isolated as a yellow solid (198 mg, 0.20 mmol, 80%). ¹H NMR (500 MHz, acetone- d_6): δ /ppm 1.71 (s, 3H, H^{a/a'}), 1.86 (s, 3H, Ha/a'), 2.17 (s, 3H, HSMe), 6.68 (m, 2H, HC3), 7.02-7.07 (m, 4H, HD2/D2'), 7.13-7.19 (m, 8H, H^{D2/D2'+D3/D3'}), 7.23-7.28 (m, 6H, H^{C4+D3/D3'}), 7.31 (m, 2H, $H^{D4/D4'}$, 7.40 (m, 2H, $H^{D4/D4'}$), 7.44 (m, 1H, H^{A5}), 7.50 (dd, J = 8.2, 0.7 Hz, 1H, H^{B5}), 7.83 (dd, J = 7.8, 1.4 Hz, 2H, H^{C5}), 8.07 (ddd, J = 8.1, 7.5, 1.7 Hz, 1H, H^{A4}), 8.13 (m, 1H, H^{B4}), 8.26 (m, 1H, H^{B3}), 8.33 (m, 1H, H^{A6}), 8.48 (dt, J =8.1, 1.0 Hz, 1H, H^{A3}). ¹³C{¹H} NMR (126 MHz, acetone- d_6): δ /ppm 15.2 (C^{SMe}) , 27.3 $(C^{a/a'})$, 30.0 $(C^{a/a'})$, 36.8 $(C^{xantphos-bridge})$, 118.8 (C^{B3}) , 121.9 $(t, J_{PC} =$ 15 Hz, C²), 122.1 (C^{B5}), 123.9 (C^{A3}), 125.9 (t, $J_{PC} = 2$ Hz, C²), 127.1 (C^{A5}), 128.3 (C^{C5}), 129.3 (t, $J_{PC} = 5$ Hz, $C^{D3/D3'}$), 129.8 (t, $J_{PC} = 5$ Hz, $C^{D3/D3'}$), 130.8 $(C^{D4/D4'})$, 130.9 $(C^{D4/D4'})$, 131.6 (C^{C3}) , 132.6 (t, $J_{PC} = 17$ Hz, $C^{D1/D1'}$), 133.0 (t, $J_{PC} = 17$ Hz, $C^{D1/D1'}$), 133.7 and 133.8 (overlapping t, $J_{PC} = 8$ Hz, $C^{D2+D2'}$), 134.5 (C^{C6}), 139.8 (C^{A4}), 140.1 (C^{B4}), 149.8 (C^{A6}), 152.3 (C^{A2}), 152.6 (C^{B2}), 156.1 (t, $J_{PC} = 6$ Hz, C^{C1}), 164.2 (C^{B6}). ³¹P{¹H} NMR (162 MHz, acetone- d_6): δ /ppm -11.8 (br. FWHM = 250 Hz), -144.2 (sept, J_{PF} = 707 Hz). ESI MS: m/z843.0 [M-PF₆]⁺ (base peak, calc. 843.2). Found C 59.90, H 4.54, N 3.12; C₅₀H₄₂CuF₆N₂OP₃S·H₂O requires C 59.61, H 4.40, N 2.78%.

 $[Cu(xantphos)(EtSbpy)][PF_6].$ The method for was as [Cu(xantphos)(MeObpy)][PF₆] starting with [Cu(MeCN)₄][PF₆] (93.2 mg, 0.25 mmol), xantphos (145 mg, 0.25 mmol) and EtSbpy (54 mg, 0.25 mmol). [Cu(xantphos)(EtSbpy)][PF₆] was isolated as a yellow solid (163 mg, 0.16 mmol, 65%). ¹H NMR (500 MHz, acetone- d_6): δ /ppm 0.76 (t, J = 7.4 Hz, 3H, H^{SEt}), 1.63 (s, 3H, $H^{a/a'}$), 1.90 (s, 3H, $H^{a/a'}$), 2.73 (q, J = 7.4 Hz, 2H, H^{SEt}), 6.75 (m, 2H, H^{C3}), 7.00 (m, 4H, H^{D2/D2}), 7.13 (m, 4H, H^{D3/D3}), 7.21-7.34 (overlapping m, 12H, H^{C4+D2/D2'+D3/D3'+D4/D4'}), 7.51 (overlapping m, 2H, H^{A5+B5}), 7.82 (dd, J = 7.8, 1.4 Hz, 2H, H^{C5}), 8.07 (m, 1H, H^{A4}) overlapping with 8.10 (m, 1H, H^{B4}), 8.21 (dd, J = 8.0, 0.8 Hz, 1H, H^{B3}), 8.43 (ddd, J = 8.3, 1.0, 1.0 Hz, 1H, H^{A3}), 8.54 (br, 1H, H^{A6}). ¹³C{¹H} NMR (126 MHz, acetone- d_6): δ /ppm 13.1 (CSEt), 26.0 (Ca/a'), 26.5 (Ca/a'), 36.8 (Cxantphos-bridge), 118.7 (CB3), 122.1 (t,

 $J_{PC} = 14$ Hz, C^{C2}), 122.5 (C^{B5}), 123.7 (C^{A3}), 125.8 (t, $J_{PC} = 2$ Hz, C^{C4}), 127.1 (C^{A5}), 128.2 (C^{C5}), 129.5 (t, $J_{PC} = 5$ Hz, $C^{D3/D3'}$), 129.9 (t, $J_{PC} = 5$ Hz, $C^{D3/D3'}$), 130.8 ($C^{D4/D4'}$), 130.9 ($C^{D4/D4'}$), 131.5 (C^{C3}), 132.6 (t, $J_{PC} = 17$ Hz, $C^{D1/D1'}$), 133.0 (t, $J_{PC} = 16$ Hz, $C^{D1/D1'}$), 133.75 (t, $J_{PC} = 8$ Hz, $C^{D2/D2'}$), 133.8 (t, $J_{PC} = 8$ Hz, $C^{D2/D2'}$), 134.6 (C^{C6}), 139.5 (C^{A4}), 139.9 (C^{B4}), 150.0 (C^{A6}), 152.4 (C^{A2}), 152.6 (C^{B2}), 156.2 (t, $J_{PC} = 6$ Hz, C^{C1}), 163.2 (C^{B6}). ³¹P{¹H} NMR (162 MHz, acetone- d_6): δ /ppm –12.1 (br. FWHM = 210 Hz), –144.2 (sept, $J_{PF} = 707$ Hz). ESI MS: m/z 857.0 [M–PF₆]⁺ (base peak, calc. 857.2). Found C 60.64, H 4.73, N 3.13; $C_{51}H_{44}CuF_6N_2OP_3S$ requires C 61.05, H 4.42, N 2.79%.

[Cu(xantphos)(PhSbpy)][PF₆]. The method was as for [Cu(xantphos)(MeObpy)][PF₆] starting with [Cu(MeCN)₄][PF₆] (93.2 mg, 0.25 mmol), xantphos (145 mg, 0.25 mmol) and PhSbpy (66 mg, 0.25 mmol). [Cu(xantphos)(PhSbpy)][PF₆] was isolated as a yellow solid (179 mg, 0.17 mmol, 68%). ¹H NMR (500 MHz, acetone-*d*₆): δ/ppm 1.58 (s, 3H, H^{a/a'}), 1.59 (s, 3H, H^{a/a'}), 6.76 (m, 2H, H^{C3}), 6.85 (m, 2H, H^{E2}), 6.91 (dd, J = 8.2, 0.8 Hz, 1H, H^{B5}), 7.02 (m, H^{D2/D2'}), 7.16 (m, 4H, H^{D3/D3'}), 7.22–7.39 (overlapping m, 14H, 4H. $H^{E3+C4+D2/D2'+D3/D3'+D4/D4'}$, 7.41 (m, 2H, $H^{D4/D4'}$), 7.47 (m, 1H, H^{E4}), 7.56 (ddd, J = 7.6, 5.1, 1.1 Hz, 1H, H^{A5}), 7.67 (dd, J = 7.8, 1.4 Hz, 2H, H^{C5}), 8.00 (m, 1H, H^{B4}), 8.10 (m, 1H, H^{A4}), 8.27 (dd, J = 8.0, 0.8 Hz, 1H, H^{B3}), 8.47 (dt, J = 8.3, 1.1 Hz, 1H, H^{A3}), 8.67 (br, 1H, H^{A6}). ¹³C{¹H} NMR (126 MHz, acetone- d_6): δ /ppm 25.9 (C^{a/a'}), 31.5 (C^{a/a'}), 36.7 (C^{xantphos-bridge}), 119.5 (C^{B3}), 121.9 (t, $J_{PC} = 14$ Hz, C^{C2}), 123.4 (C^{B5}), 123.9 (C^{A3}), 125.8 (t, J_{PC} = 3 Hz, C^{C4}), 127.4 (C^{A5}), 128.5 (C^{C5}), 129.5 (C^{E1}), 129.6 (t, J_{PC} = 5 Hz, $C^{D3/D3'}$), 129.9 (t, $J_{PC} = 5$ Hz, $C^{D3/D3'}$), 130.9 (C^{E3}), 130.9 ($C^{D4+D4'}$), 131.1 (C^{E4}), 131.7 (C^{C3}), 132.7 (t, $J_{PC} = 17$ Hz, $C^{D1/D1'}$), 132.8 (t, $J_{PC} = 18$ Hz, $C^{D1/D1'}$), 133.7 (t, $J_{PC} = 8$ Hz, $C^{D2/D2'}$), 133.9 (t, $J_{PC} = 8$ Hz, $C^{D2/D2'}$), 134.3 (C^{C6}), 135.4 (C^{E2}), 139.8 (C^{A4}), 140.4 (C^{B4}) , 150.2 (C^{A6}) , 152.5 (C^{A2}) , 152.7 (C^{B2}) , 156.0 $(t, J_{PC} = 6 \text{ Hz}, C^{C1})$, 164.4 (C^{B6}) . ³¹P{¹H} NMR (162 MHz, acetone- d_6): δ /ppm –11.7 (br. FWHM = 175 Hz), –144.2 (sept, $J_{PF} = 707$ Hz). ESI MS: m/z 905.0 [M–PF₆]⁺ (base peak, calc. 905.2). Found C 61.56, H 4.61, N 2.75; C₅₅H₄₄CuF₆N₂OP₃S·H₂O requires C 61.77, H 4.34, N 2.62%.

8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8

Fig. S1 500 MHz ¹H NMR spectrum of [Cu(POP)(MeObpy)][PF₆] in acetone- d_6 . See also Fig. 1 in the manuscript. * = residual CD₃C(O)CD₂H. Chemical shifts in δ /ppm.

8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8

Fig. S3 Aromatic region of the 500 MHz ¹H NMR spectrum of $[Cu(POP)(PhObpy)][PF_6]$ in acetone-*d*₆. Chemical shifts in δ /ppm.

8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6

Fig. S4 Aromatic region of the 500 MHz ¹H NMR spectrum of $[Cu(xantphos)(MeObpy)][PF_6]$ in acetone- d_6 . Chemical shifts in δ /ppm.

Fig. S5 Aromatic region of the 500 MHz ¹H NMR spectrum of $[Cu(xantphos)(EtObpy)][PF_6]$ in acetone- d_6 . Chemical shifts in δ /ppm.

Fig. S6 Aromatic region of the 500 MHz ¹H NMR spectrum of $[Cu(xantphos)(PhObpy)][PF_6]$ in acetone-*d*₆. Chemical shifts in δ /ppm.

8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8

Fig. S7 Aromatic region of the 500 MHz ¹H NMR spectrum of $[Cu(POP)(MeSbpy)][PF_6]$ in acetone- d_6 . Chemical shifts in δ /ppm.

8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8

Fig. S8 Aromatic region of the 500 MHz ¹H NMR spectrum of $[Cu(POP)(EtSbpy)][PF_6]$ in acetone- d_6 . Chemical shifts in δ /ppm.

8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7

Fig. S9 Aromatic region of the 500 MHz ¹H NMR spectrum of $[Cu(POP)(PhSbpy)][PF_6]$ in acetone- d_6 . Chemical shifts in δ /ppm.

Fig. S10 Aromatic region of the 500 MHz ¹H NMR spectrum of $[Cu(xantphos)(MeSbpy)][PF_6]$ in acetone-*d*₆. Chemical shifts in δ /ppm.

Fig. S11 Aromatic region of the 500 MHz ¹H NMR spectrum of $[Cu(xantphos)(EtSbpy)][PF_6]$ in acetone- d_6 . Chemical shifts in δ /ppm.

Fig. S12 Aromatic region of the 500 MHz ¹H NMR spectrum of $[Cu(xantphos)(PhSbpy)][PF_6]$ in acetone- d_6 . Chemical shifts in δ /ppm.

Table S2 Crysta	allographie datafor the	cdpper(19tcom)pfexes	2{[Cu(POP)(PhObpy)][PF ₆]}	[Cu(POP)(MeSbpy)][PF ₆]
Formula Formula weight	$C_{47}H_{38}CuF_6N_2O_2P_3$ 933 29	$C_{48}H_{40}CuF_6N_2O_2P_3$ 947 31	$C_{105,50}H_{83}Cl_3Cu_2F_{12}N_4O_4P_6$ 2118 11	$C_{47}H_{38}CuF_6N_2OP_3S$
Crystal colour: habit	vellow block	vellow block	vellow block	vellow block
Crystal system	monoclinic	orthorhombic	triclinic	triclinic
Crease meun		Dhag	D 1	D 1
space group	$P2_1/C$ 10.7204(8)	PDCa 16 2502(10)	P-1	P-1 0.0120(0)
<i>u, b, c </i> A	10.7304(0)	10.3593(10)	14.4362(9)	9.9139(9)
	96702(7)	26.1303(12)	215959(14)	15,7717(14)
a Bylo	90	90	107 797(3)	82 112(3)
α,ρ,η	108.260(4)	90	104.175(3)	84.629(3)
	90	90	94.745(3)	71.123(3)
U / Å ³	4290.5(5)	8768.5(9)	4877.4(6)	2085.0(3)
$D_c / Mg m^{-3}$	1.445	1.435	1.44	1.512
Ζ	4	8	2	2
μ (Cu-K α) / mm ⁻¹	2.359	2.317	2.885	2.875
π (uu nu) / nim	102	122	102	122
1/K	123	123	123	123
RefIn. collected (R_{int})	28076 (0.030)	31282 (0.042)	64272 (0.033)	27895 (0.025)
Unique refln.	7688	8014	17894	7564
Refln. for refinement	7266	7093	16525	7524
Parameters	583	559	1216	550
Threshold	$I > 2\sigma(I)$	$I > 2\sigma(I)$	$I > 2\sigma(I)$	$I > 2\sigma(I)$
R1 (R1 all data)	0.0951(0.0977)	0.0397 (0.0453)	0.0547 (0.0582)	0.0453 (0.0454)
wR2 (wR2 all data)	0.2331 (0.2338)	0.0964 (0.0991)	0.1435 (0.1445)	0.0847 (0.0847)
Goodness of fit	1 0713	0.9818	0.9889	0 9337
CCDC	15(2400	15(2410	15(2412	15(2440
ՆԵՄԵ	1302400	1302410	1302412	1302449
Compound	[Cu(POP)(EtSbpy)][PF ₆]	[Cu(POP)(PhSbpy)][PF ₆]	[Cu(xantphos)(MeObpy)][PF ₆]	[Cu(xantphos)(EtObpy)][PF ₆]
	·Et ₂ 0		$\cdot CH_2Cl_2 \cdot 0.5Et_2O$	·0.5CH ₂ Cl ₂ ·0.5H ₂ O
Formula	$C_{52}H_{50}CuF_6N_2O_2P_3S$	$C_{52}H_{40}CuF_6N_2OP_3S$	$C_{53}H_{49}Cl_2CuF_6N_2O_{2.50}P_3\\$	$C_{51.50}H_{46}ClCuF_6N_2O_{2.50}P_3$
Formula weight	1037.50	1011.42	1095.34	1038.85
Crystal colour; habit	yellow block	yellow block	yellow block	yellow block
Crystal system	monoclinic	monoclinic	triclinic	triclinic
Space group	C2/c	$P2_1/n$	P-1	P-1
a, b, c / Å	31.7468(14)	9.8131(14)	10.9394(9)	10.8766(6)
	15.6233(7)	28.886(4)	15.1458(11)	15.2866(9)
	19.5833(9)	16.433(3)	18.1780(14)	18.4018(10)
α,β,γ/°	90	90	109.391(4)	106.817(4)
	101.338(3)	103.040(6)	98.101(4)	102.402(3)
	90	90	108.096(4)	107.943(4)
U / Å ³	9523.6(7)	4538.0(12)	2598.5(4)	2626.6(3)
$D_c / Mg m^{-3}$	1.45	1.480	1.400	1.313
Ζ	8	4	2	2
μ(Cu-Kα) / mm ⁻¹	2.581	2.681	2.962	2.445
Т/К	123	123	123	123
Refln. collected (R_{int})	30655 (0.105)	30102 (0.036)	29615 (0.043)	34275 (0.052)
Unique refln.	8549	8311	9390	9596
Refln. for refinement	4643	8050	8070	6647
Parameters	559	595	649	622
Threshold	$l > 2\sigma(l)$	$I > 2\sigma(I)$	$I > 2\sigma(I)$	$I > 2\sigma(I)$
R1 (R1 all data)	0.0716 (0.1221)	0.0377 (0.0386)	0.0789 (0.0870)	0.0874 (0.1131)
wR2 (wR2 all data)	0.1918 (0.2423)	0.0859 (0.0861)	0.2020 (0.2060)	0.2180 (0.2367)
Goodness of fit	1.0159	0.9970	1.0785	1.1211
CCDC	1562407	1562453	1562409	1562411
Compound	[Cu(xantphos)(PhObpy)][PF.]	[Cu(xantphos)(MeShov)][PF.]	[Cu(xantphos)(EtShnv)][PF.]	[Cu(xantphos)(PhShow)][PF.]
pound	·3CH ₂ Cl ₂	$\cdot 0.5 CH_2 Cl_2 \cdot 0.5 Et_2 O$	·1.5Et ₂ O	·0.5CH ₂ Cl ₂
Formula	C H CLCUENOP	C H CICHENO DS	C H CHENO DS	C H CICHENODS
Formula woight	1290 22	1068 95	1114 63	055.511450100F6N20F30
Crystal colour: habit	vellow block	vellow block	vellow block	vellow block
Crystal colour; Habit	triclinic	triclinic	yellow Diock	triclinic
Space group				
a h c / Å	12 2822(8)	10.0688(6)	r = 1 10.0104(5)	10 9025(7)
u, v, c / 11	14 0597(8)	15 3886(8)	15 3624(8)	13 2292(9)
	17 5669(10)	18 2399(10)	16.8151(9)	17 8354(12)
a Rul 0	102 548(2)	110 2008(17)	05 111(2)	80.615(2)
upp //	112.186(3)	97.3701(19)	93.760(3	84.731(3)
	98.856(3)	108.6020(18)	107.807(3)	83.868(3
U / Å ³	2865.4(3)	2636.0(3)	2662.0(2)	2516.2(3)
$D_c / Mg m^{-3}$	1.495	1.347	1.39	1.44
Ζ.	2	2	2	2
μ (Cu-K α) / mm ⁻¹	4.449	2.797	2.354	2.939
	100	400	100	100
I/K	123	123	123	123
Kefin. collected (R_{int})	37/03 (0.033)	34/70 (0.023)	31869 (0.039)	32882 (0.032)
Unique refln.	10515	9618	9530	9230
Refln. for refinement	9124	9024	8534	9178
Parameters	703	649	631	622
Threshold	$l > 2\sigma(l)$	$l > 2\sigma(l)$	$I > 2\sigma(I)$	$l > 2\sigma(l)$
R1 (R1 all data)	0.0697 (0.0771)	0.0613 (0.0634)	0.0597 (0.0654)	0.0470 (0.0525)
wR2 (wR2 all data)	0.1821 (0.1855)	0.1715 (0.1727)	0.1461 (0.1481)	0.1233 (0.1258)
Goodness of fit	1 0491	0.9810	1 0908	1 0152
CCDC	1562457	15624458	15624460	1562448
66 <i>D</i> 6	1304737	13027730	13027700	1302770

Fig. S13 Structure of the $[Cu(POP)(MeObpy)]^+$ cation in $[Cu(POP)(MeObpy)][PF_6]$. H atoms are omitted and ellipsoids are plotted at 40% probability level. Selected bond parameters: Cu1-P1 = 2.2711(12), Cu1-P2 = 2.2387(12), Cu1-N1 = 2.045(4), Cu1-N2 = 2.096(4), O1-C1 = 1.443(7), O1-C2 = 1.330(7), O2-C29 = 1.398(5), O2-C30 = 1.400(5) Å; P1-Cu1-P2 = 113.83(5), P1-Cu1-N1 = 110.44(11), P2-Cu1-N1 = 124.55(12), P1-Cu-N2 = 105.71(12), P2-Cu1-N2 = 117.08(11), N1-Cu1-N2 = 79.49(17), C1-O1-C2 = 118.3(5), $C29-O2-C30 = 118.7(3)^{\circ}$.

Fig. S14 Structure of the $[Cu(POP)(EtObpy)]^+$ cation in $[Cu(POP)(EtObpy)][PF_6]$. H atoms are omitted and ellipsoids are plotted at 40% probability level. Selected bond parameters: Cu1–P1 = 2.2712(6), Cu1–P2 = 2.2259(6), Cu1–N1 = 2.0589(18), Cu1–N2 = 2.0737(17), O1–C30 = 1.392(2), O1–C31 = 1.397(2), O2–C2 = 1.454(3), O2–C3 = 1.348(3) Å; P1–Cu1–P2 = 116.48(2), P1–Cu1–N1 = 109.75(5), P2–Cu1–N1 = 126.11(5), P1–Cu1–N2 = 105.49(5), P2–Cu1–N2 = 111.46(5), N1–Cu1–N2 = 79.65(7), C30–O1–C31 = 118.88(15), C2–O2–C3 = 119.52(19)°.

Fig. S15 Structure of one of the two crystallographically independent $[Cu(POP)(PhObpy)]^+$ cations in $2\{[Cu(POP)(PhObpy)][PF_6]\}\cdot 1.5CH_2Cl_2$. Solvent molecules and H atoms are omitted and ellipsoids are plotted at 40% probability level. Selected bond parameters: Cu1–P1 = 2.2391(7), Cu1–P2 = 2.2599(7), Cu1–N1 = 2.076(2), Cu1–N2 = 2.094(2), O1–C6 = 1.409(3), O1–C7 = 1.365(3), O2–C34 = 1.403(3), O2–C35 = 1.395(3) Å; P1–Cu1–P2 = 110.83(3), P1–Cu1–N1 = 114.23(6), P2–Cu1–N1 = 125.02(6), P1–Cu1–N2 = 123.33(6), P2–Cu1–N2 = 100.71(6), N1–Cu1–N2 = 79.43(8), C6–O1–C7 = 117.17(19), C34–O2–C35 = 116.64(18)°.

Fig. S16 Structure of the $[Cu(POP)(MeSbpy)]^+$ cation in $[Cu(POP)(MeSbpy)][PF_6]$. H atoms are omitted and ellipsoids are plotted at 40% probability level. Selected bond parameters: Cu1-P1 = 2.2281(7), Cu1-P2 = 2.2913(7), Cu1-N1 = 2.069(2), Cu1-N2 = 2.138(2), S1-C1 = 1.790(3), S1-C2 = 1.769(3), O1-C29 = 1.387(3), O1-C30 = 1.393(3) Å; P1-Cu1-P2 = 118.99(3), P1-Cu1-N1 = 133.70(6), P2-Cu1-N1 = 102.37(6), P1-Cu1-N2 = 113.71(6), P2-Cu1-N2 = 97.21(7), N-Cu1-N2 = 78.09(9), C1-S1-C2 = 103.63(13), $C29-O1-C30 = 118.78(17)^{\circ}$.

Fig. S17 Structure of the $[Cu(POP)(EtSbpy)]^+$ cation in $[Cu(POP)(EtSbpy)][PF_6]$ ·Et₂O. H atoms are omitted and ellipsoids are plotted at 30% probability level; solvent molecule was not refined (see text). Selected bond parameters: Cu1–P1 = 2.2756(18), Cu1–P2 = 2.2328(17), Cu1–N1 = 2.059(5), Cu1–N2 = 2.101(5), S1–C2 = 1.798(8), S1–C3 = 1.770(7), O1–C30 = 1.412(8), O1–C31 = 1.404(8) Å; P1–Cu1–P2 = 113.86(7), P1–Cu1–N1 = 106.57(16), P2–Cu1–N1 = 132.61(15), P1–Cu1–N2 = 105.48(15), P2–Cu1–N2 = 110.70(16), N1–Cu1–N2 = 79.8(2), C2–S1–C3 = 104.0(4), C30–O1–C31 = 116.5(5)°.

Fig. S18 Structure of the $[Cu(POP)(PhSbpy)]^+$ cation in $[Cu(POP)(PhSbpy)][PF_6]$. H atoms are omitted and ellipsoids are plotted at 40% probability level. Selected bond parameters: Cu1-P2-2.2818(6), Cu1-P1 = 2.2699(6), Cu1-N2 = 2.0725(17), Cu1-N1 = 2.1239(16), C6-S1 = 1.776(2), C7-S1 = 1.752(2), C34-O1 = 1.383(2), C35-O1 = 1.388(2) Å; P2-Cu1-P1 = 112.49(2), P2-Cu1-N2 = 114.48(5), P1-Cu1-N2 = 116.08(5), P2-Cu-N1 = 111.72(5), P1-Cu1-N1 = 119.34(5), $N-Cu-N1 = 78.86(7)^{\circ}$.

Fig. S19 Structure of the $[Cu(xantphos)(MeObpy)]^+$ cation in $[Cu(xantphos)(MeObpy)][PF_6] \cdot CH_2Cl_2 \cdot 0.5Et_2O$. H atoms and solvent molecules are omitted and ellipsoids are plotted at 30% probability level. Selected bond parameters: Cu1-P1 = 2.2376(10), Cu1-P2 = 2.2569(10), Cu1-N1 = 2.046(3), Cu1-N2 = 2.071(3), O1-C29 = 1.386(4), O1-C38 = 1.393(4), O2-C1 = 1.440(5), O2-C2 = 1.325(5) Å; P1-Cu1-P2 = 114.42(4), P1-Cu1-N1 = 121.10(9), P2-Cu1-N1 = 109.89(9), P1-Cu1-N2 = 115.42(9), P2-Cu1-N2 = 111.62(9), $N1-Cu-N2 = 79.67(13)^{\circ}$.

Fig. S20 Structure of the [Cu(xantphos)(EtObpy)]⁺ cation in [Cu(xantphos)(EtObpy)] [PF₆]·0.5CH₂Cl₂·0.5H₂O. H atoms and solvent molecules are omitted and ellipsoids are plotted at 30% probability level. Selected bond parameters: Cu1–P1 = 2.2363(11), Cu1–P2 = 2.2524(12), Cu1–N1 = 2.026(4), Cu1–N2 = 2.094(4), O1–C30 = 1.376(5), O1–C39 = 1.387(5), O2–C2 = 1.435(7), O2–C3 = 1.316(6) Å; P1–Cu1–P2 = 114.15(4), P1–Cu1–N1 = 119.87(12), P2–Cu1–N1 = 112.97(11), P1–Cu1–N2 = 114.22(12), P2–Cu1–N2 = 111.02(12), N1–Cu1–N2 = 79.91(17), C30–O1–C39 = 114.5(3), C2–O2–C3 = 122.4(5)°.

Fig. S21 Structure of the $[Cu(xantphos)(PhObpy)]^+$ cation in $[Cu(xantphos)(PhObpy)][PF_6] \cdot 3CH_2Cl_2$. H atoms and solvent molecules are omitted and ellipsoids are plotted at 30% probability level. Selected bond parameters: Cu1–P1 = 2.2767(9), Cu1–P2 = 2.2422(9), Cu1–N1 = 2.087(3), Cu1–N2 = 2.068(3), O1–C10 = 1.357(5), O1–C11 = 1.405(4), O2–C34 = 1.391(4), O2–C43 = 1.390(4) Å; P1–Cu1–P2 = 113.29(3), P1–Cu1–N1 = 111.01(8), P2–Cu1–N1 = 119.20(8), P1–Cu1–N2 = 111.65(8), P2–Cu1–N2 = 118.52(8), N1–Cu1–N2 = 78.76(11), C10–O1–C11 = 119.4(3), C34–O2–C43 = 113.8(2)°.

Fig. S22 Structure of the $[Cu(xantphos)(MeSbpy)]^+$ cation in $[Cu(xantphos)(MeSbpy)][PF_6] \cdot 0.5CH_2Cl_2 \cdot 0.5Et_2O$. H atoms and solvent molecules are omitted and ellipsoids are plotted at 30% probability level. Selected bond parameters: Cu1-P2 = 2.2666(8), Cu1-P1 = 2.2463(8), Cu1-N2 = 2.079(3), Cu1-N1 = 2.049(3), C1-S1 = 1.783(4), C2-S1 = 1.744(3), C29-O1 = 1.396(3), C38-O1 = 1.384(3) Å; P2-Cu1-P1 = 113.33(3), P2-Cu1-N2 = 111.24(8), P1-Cu1-N2 = 114.12(8), P2-Cu1-N1 = 111.71(8), P1-Cu1-N1 = 122.20(7), N2-Cu1-N1 = 79.70(11), C1-S1-C2 = 104.2(2), $C29-O1-C38 = 114.2(2)^{\circ}$.

Fig. S23 Structure of the $[Cu(xantphos)(EtSbpy)]^+$ cation in [Cu(xantphos)(EtSbpy)][PF₆]·1.5Et₂O. H atoms and solvent molecules are omitted and ellipsoids are plotted at 30% probability level. Selected bond parameters: Cu1–P1 = 2.2680(8), Cu1–P2 = 2.2534(7), Cu1–N1 = 2.062(2), Cu1–N2 = 2.084(2), S1–C2 = 1.822(3), S1–C3 = 1.753(3), O1–C29 = 1.386(3), O1–C39 = 1.396(3) Å; P1–Cu1–P2 = 113.65(3), P1– Cu1–N1 = 114.37(7), P2–Cu1–N1 = 118.96(7), P1–Cu1–N2 = 112.49(7), P2–Cu1– N2 = 113.39(6), N1–Cu1–N2 = 79.48(9), C2–S1–C3 = 103.77(14), C29–O1–C39 = 114.56(19)°.

Fig. S24 Structure of the $[Cu(xantphos)(PhSbpy)]^+$ cation in $[Cu(xantphos)(PhSbpy)][PF_6] \cdot 0.5CH_2Cl_2$. H atoms are omitted and ellipsoids are plotted at 40% probability level. The solvent molecule was not refined (see text). Selected bond parameters: Cu1–P1 = 2.2717(7), Cu1–P2 = 2.2466(7), Cu1–N1 = 2.066(2), Cu1–N2 = 2.079(2), S1–C1 = 1.774(3), S1–C7 = 1.764(2), O1–C34 = 1.388(3), O1–C43 = 1.386(3) Å; P1–Cu1–P2 = 115.71(2), P1–Cu1–N1 = 111.38(6), P2–Cu1–N1 = 119.48(6), P1–Cu1–N2 = 112.79(6), P2–Cu1–N2 = 112.84(6), N1–Cu1–N2 = 79.40(8), C1–S1–C7 = 103.84(12), C34–O1–C43 = 114.85(18)°.

Table S3 Selected structural parameters calculated at the B3LYP-D3/(def2svp+ def2tzvp) level in CH_2Cl_2 solution for $[Cu(P^AP)(N^AN)]^+$ complexes in their electronic ground state S_0 and in their first triplet excited state T_1 .

	Cu–P distance	Cu–N distance	P-Cu-P	N-Cu-N	Angle formed by	N-C-C-N					
Cation	/Å (Cu1–P1,	/Å (Cu1-N1,	chelating	chelating	P-Cu-P and N-	torsion					
	Cu1-P2)	Cu1-N2)	angle /°	angle /°	Cu–N planes /°	angle /°					
Ground state (S ₀)											
[Cu(POP)(bpy)] ^{+ a}	2.246, 2.284	2.096, 2.069	113.84	80.09	80.37	14.29					
[Cu(POP)(6-MeObpy)] ⁺	2.256, 2.281	2.104, 2.082	113.04	79.08	81.05	14.24					
[Cu(POP)(6-EtObpy)] ⁺	2.268, 2.271	2.103, 2.081	113.70	78.17	82.60	9.69					
[Cu(POP)(6-PhObpy)] ⁺	2.262, 2.282	2.106, 2.081	113.36	78.60	86.02	5.69					
[Cu(POP)(6-MeSbpy)] ⁺	2.271, 2.286	2.098, 2.097	113.84	79.10	81.97	9.78					
[Cu(POP)(6-EtSbpy)] ⁺	2.275, 2.282	2.097, 2.095	113.86	79.14	82.34	9.82					
[Cu(POP)(6-PhSbpy)] ⁺	2.302, 2.271	2.107, 2.106	113.09	78.40	84.42	9.33					
[Cu(xantphos)(bpy)] ^{+ a}	2.269, 2.270	2.104, 2.068	114.40	79.75	86.94	3.23					
[Cu(xantphos)(6-MeObpy)] ⁺	2.268, 2.276	2.099, 2.083	114.20	78.94	87.84	3.73					
[Cu(xantphos)(6-EtObpy)] ⁺	2.274, 2.275	2.107, 2.079	114.15	78.74	88.76	2.51					
[Cu(xantphos)(6-PhObpy)] ⁺	2.276, 2.274	2.107, 2.081	114.36	78.56	89.67	2.02					
[Cu(xantphos)(6-MeSbpy)] ⁺	2.257, 2.300	2.100, 2.096	114.40	78.95	86.61	5.95					
[Cu(xantphos)(6-EtSbpy)] ⁺	2.274, 2.289	2.105, 2.091	113.53	78.84	88.02	2.81					
[Cu(xantphos)(6-PhSbpy)] ⁺	2.313, 2.255	2.115, 2.097	115.48	78.53	89.37	5.85					
Triplet excited state (T ₁)											
[Cu(POP)(bpy)] ^{+ a}	2.365, 2.334	1.982, 1.981	102.90	83.46	59.69	2.83					
[Cu(POP)(6-MeObpy)] ⁺	2.364, 2.333	2.003, 1.951	103.50	82.49	60.67	3.29					
[Cu(POP)(6-EtObpy)]+	2.365, 2.329	2.000, 1.952	103.85	82.43	60.79	3.53					
[Cu(POP)(6-PhObpy)] ⁺	2.353, 2.340	1.988, 1.965	105.26	82.40	63.75	4.24					
[Cu(POP)(6-MeSbpy)]+	2.386, 2.310	2.016, 1.953	104.00	82.33	62.11	3.73					
[Cu(POP)(6-EtSbpy)] ⁺	2.387, 2.307	2.018, 1.948	104.30	82.02	62.81	3.35					
[Cu(POP)(6-PhSbpy)]+	2.396, 2.314	2.019, 1.949	103.73	81.79	65.32	3.57					
[Cu(xantphos)(bpy)] ^{+ a}	2.399, 2.350	1.997, 1.981	105.92	83.06	57.53	1.99					
[Cu(xantphos)(6-MeObpy)] ⁺	2.378, 2.362	1.981, 1.979	105.72	82.63	61.01	2.64					
[Cu(xantphos)(6-EtObpy)]*	2.378, 2.361	1.979, 1.979	106.75	82.66	65.01	4.04					
[Cu(xantphos)(6-PhObpy)] ⁺	2.378, 2.350	1.985, 1.981	106.96	82.41	65.58	5.07					
[Cu(xantphos)(6-MeSbpy)] ⁺	2.399, 2.342	1.990, 1.970	105.93	82.50	64.05	1.12					
[Cu(xantphos)(6-EtSbpy)] ⁺	2.397, 2.342	1.988, 1.972	105.74	82.47	64.98	1.67					
[Cu(xantphos)(6-PhSbpy)] ⁺	2.391, 2.340	2.000, 1.959	107.50	82.33	69.42	2.22					

^{*a*} Values from ref. 5.

Fig. S25 Isovalue contour plots (± 0.03 a.u.) for the HOMO (left) and LUMO (right) of complexes [Cu(POP)(6-EtObpy)]⁺ (a) and [Cu(Xanthpos)(6-EtObpy)]⁺ (b).

Fig. S26 Absorption spectra of CH_2Cl_2 solutions of $[Cu(POP)(N^N)][PF_6]$ complexes (concentration = 2.5×10^{-5} mol dm⁻³).

Fig. S27 Emission spectra of solutions (CH₂Cl₂, 2.5 × 10⁻⁵ mol dm⁻³) of [Cu(POP)(N^N)][PF₆] complexes (see Table 3 for λ_{exc}).

Fig. S28 Emission spectra of powder samples of $[Cu(POP)(N^N)][PF_6]$ complexes ($\lambda_{exc} = 365 \text{ nm}$).

Fig. S29 Emission spectra of $[Cu(POP)(N^N)][PF_6]$ complexes in frozen Me-THF ($\lambda_{exc} = 410 \text{ nm}$).

Fig. S30 Efficacy (top) and luminance (bottom) *vs.* time for LECs employing RSbpy ligands and either (a) xantphos or (b) POP as bisphosphane ligands. LECs were driven with pulsed current density at 50 A/m^2 (1 kHz, 50% duty cycle, square wave).

Fig. S31 Time evolution of the voltage for LECs based on (a) $[Cu(xantphos)(RObpy)][PF_6]$, (b) $[Cu(xantphos)(RSbpy)][PF_6]$, (c) $[Cu(POP)(RObpy)][PF_6]$ and (d) $[Cu(POP)(RSbpy)][PF_6]$ complexes. LECs were driven with pulsed current density at 50 A/m² (1 kHz, 50% duty cycle, square wave).

Fig. S32 Electroluminescence spectra of LECs employing $[Cu(P^P)(RXbpy)][PF_6]$ complexes (X = O, S) with (a) xantphos or (b) POP ligands. LECs were driven with pulsed current density at 50 A/m² (1 kHz, 50% duty cycle, square wave).

Fig. S33 Fit of the electroluminescence spectra for the complex $[Cu(xantphos)(PhObpy)][PF_6]$ with the sum of two Gaussian functions. The centre and full width at half maximum of the two components are reported in the corresponding colour.

References

- 2 P. Gros and Y. Fort, J. Chem. Soc., Perkin Trans. 1, 1998, 3515.
- 3 J. Carroll, H.G. Woolard, R. Mroz, C.A. Nason and S. Huo, *Organometallics*, 2016, **35**, 131.
- 4 J. Uenishi, T. Ueno, S. Hata, K. Nishiwaki, T. Tanaka, S. Wakabayashi, O. Yonemitsu and S. Oae. *Heterocycles*, 1999, **50**, 341.
- 4 S. Keller, A. Prescimone, H. Bolink, M. Sessolo, G. Longo, Laura Martínez-Sarti, J. M. Junquera-Hernández, E. C. Constable, E. Ortí and C. E. Housecroft, *Dalton Trans.*, 2018, DOI: 10.1039/c8dt01338a.

¹ J.F.M. da Silva, A.F. Yepes Perez and N.P. de Almeida, *Synth. Comm.*, 2015, **45**, 1995.